

Idiopathic Inflammatory Myopathies (IIM or Myositis)

IIM (also known as myositis) is a group of rare autoimmune diseases characterized by inflammation and skeletal muscle weakness that sometimes involves the skin, joints, lungs, gastrointestinal tract, and heart¹

Subtypes

Clinical manifestations and muscle histopathologic features of myositis vary between subtypes of the disease^{2,3}

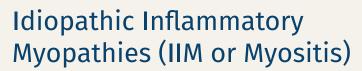
^aNewer subgroups, ASyS and IMNM, have been identified on the basis of MSAs.³
^bHistorically, PM was the overarching name for these disorders, but it is disputed as an entity within the spectrum and is considered a diagnosis by exclusion.^{3,5}

- Dermatomyositis (DM): Subacute onset of proximal, symmetric weakness with characteristics of skin rash in patients of any age⁴
- Antisynthetase syndrome (ASyS): Multisystem disease that is relatively homogeneous and does not always present with myositis^{3,a}
- Immune-mediated necrotizing myopathy (IMNM): Acute or subacute onset of proximal, often severe weakness in adults^{4,a}
- Inclusion body myositis (IBM): Slow onset of proximal and distal weakness, frequent falls, muscle atrophy in quadriceps and forearms; mild facial weakness in adults ≥50 years old⁴
- Overlap myositis (OM): Heterogeneous IIM subgroup with varying histological findings which can occur with other connective diseases (eg, SLE, systemic sclerosis, Sjögren's syndrome, or rheumatoid arthritis)³
- Polymyositis (PM): Subacute onset of proximal weakness in adults with other causes excluded.⁴ Most patients previously diagnosed with PM are classified as having ASyS, IMNM, IBM, or OM^{3,b}

Disease Burden

Myositis has a substantial impact on disability, especially by reducing physical functioning⁶⁻⁸

• In a population-based cohort in Norway, patients with myositis were found to have an estimated 1.7- to 2.6-fold higher risk of death compared with the general population^{9,f}


Based on a global prospective cross-sectional patient-reported online survey developed by Myositis Support and Understanding and University of Texas-Southwestern (N=583; 71% female; 88% white or Caucasian; age range, 18-90).

Based on a retrospective analysis of patients with IIM (n=146 for damage analysis; n=25 for mortality analysis) followed in a tertiary hospital in Portugal between 1971 and

December 2022 to characterize morbidities associated with myositis, including effects on QoL and mortality as assessed using the MDI and HAQ-DI.⁶ Based on a meta-analysis of 109 studies including 10,382 patients with myositis identified from a MEDLINE search from inception to January 2020. Definitions and assessments of dysphagia differed between studies included in the meta-analysis.⁸

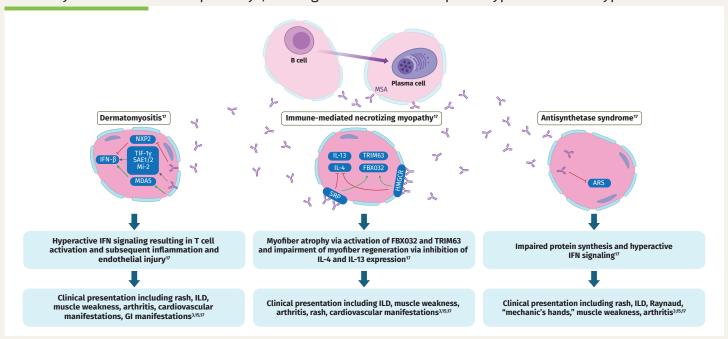
In a population-based cohort of patients with myositis in Norway (N=326); main disease-related causes of death included cancer, interstitial lung disease/pulmonary hypertension, infection, and aspiration and dysphagia.9

Proposed Role of IgG Autoantibodies in Myositis

Evidence suggests that several IIM subtypes, particularly DM, IMNM, and ASyS, are associated with IgG autoantibodies, myositis-specific autoantibodies (MSAs), and myositis-associated autoantibodies (MAAs)^{2,3,10}

- In patients with myositis, IgG autoantibodies are internalized within muscle cells, localize to the target autoantigen, and disrupt the autoantigen protein function¹¹
- Patients with PM and DM may have elevated IgG levels compared with healthy controls¹²
- Passive transfer of IgG purified from the plasma of patients with IMNM can induce muscle weakness, necrosis, and muscle fiber regeneration in a mouse model^{1,13}

MSAs


- MSAs are exclusively found in patients with myositis and have been demonstrated to correlate with distinct clinical phenotypes^{3,15}
 - However, some patients with myositis show no detectable MSAs and are considered seronegative, including 34% of patients with IMNM¹6

MAAs

- While MSAs are specific to myositis and linked to distinct clinical phenotypes, MAAs are less specific, often found in overlap connective tissue diseases (eg, SLE, systemic sclerosis, Sjögrens syndrome)^{2,14}
- MAAs may correlate with clinical features (eg, "mechanic's hand," ILD, dysphagia severity) and represent important diagnostic markers¹⁴

Proposed Pathophysiology Across Myositis Subtypes^{17,g}

MSAs may modulate immune pathways, leading to distinct clinical phenotypes across subtypes¹⁷

Green arrows indicate activation, red arrows indicate inhibition, broken arrows suggest hypothesized functions, and the purple arrow illustrates B cell differentiation.

Abbreviations: ARS, aminoacyl-tRNA synthetase; CV, cardiovascular; FBX032, F-box only protein 32; GI, gastrointestinal; HAQ-DI, Health Assessment Questionnaire-Disability Index; HMCCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; IFN, interferon; IL, interleukin; IgG, immunoglobulin G; MDA5, melanoma differentiation-associated protein 5; MDI, Myositis Damage Index; Mi-2, nucleosome-remodeling deacetylase complex; NXP2, nuclear matrix protein 2; QoL, quality of life; SAEI/2, small ubiquitin-like modifier activating enzyme; SLE, systemic lupus erythematosus; SRP, signal recognition particle; TIF-1, transcription intermediary factor 1; TRIM63, tripartite motif containing 63.

References

1. Allenbach Y, et al. Nat Rev Rheum. 2020;16(12):689-701. 2. Schmidt J. J Neuromuscul Dis. 2018;5(2):109-129. 3. Lundberg IE, et al. Nat Rev Dis Primers. 2021;7(1):86. 4. Dalakas MC. N Engl J Med. 2015;372(18):1734-1747. 5. Kamperman RG, et al. Int J Mol Sci. 2022;23(8):4301. 6. Campar A, et al. Autoimmun Rev. 2023;22(12):103455. 7. Bhai S, et al. Presented at: EULAR 2024 European Congress of Rheumatology; June 12-15; Vienna, Austria. 8. Labeit B, et al. J Clin Med. 2020;9(7):2150. 9. Dobloug GC, et al. Semin Arthritis Rheum. 2015;45(3):301-308. 10. Damoiseaux J, et al. Autoimmun Rev. 2019;18(3):293-305. 11. Pinal-Fernandez I, et al. Ann Rheum Dis. 2024;83(11):1549-1560. 12. Lisak RP, et al. J Neurol Neurosurg Psychiatry. 1976;39(1): 34-47. 13. Bergua C, et al. Ann Rheum Dis. 2019;78:131-139. 14. Betteridge Z, McHugh N. J Intern Med. 2016;280(1):8-23. 15. Allameen NA, et al. Nat Rev Rheumatol. 2025;21(1):46-62. 16. Lim JL, et al. Neurol Neuroimmunol Neuroimflamm. 2019;6:e513. 17. Wischnewski S, et al. Trends Pharmacol Sci. 2025:S0165-6147(25)00005-7.