Reduction in oral glucocorticoid use at 18 months following efgartigimod initiation based on a United States claims database

Neelam Goyal, Cynthia Qi, Edward Brauer, Matthew Jefferson, Kristin Heerlein, Rohit R Menon, Sam Selvaraj, Mai Sato, Gil I. Wolfe

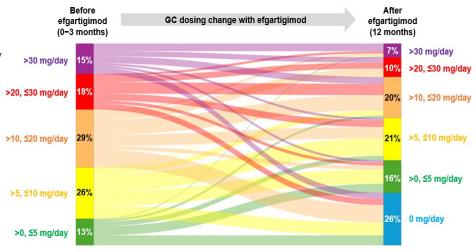
Neelam Goyal, MD

Clinical Professor of Neurology, Stanford Medicine

MGFA Scientific Session 2025

Financial disclosures

- This research was funded by argenx US, Inc.
- Dr. Goyal has served as a paid consultant for argenx, Alexion, UCB, Janssen, Amgen, Seismic, Cartesian, EMD Serono, and has grant support from argenx.
- GIW has served as member of advisory boards or provided paid consultations to Alexion, argenx, Cartesian, Janssen, and UCB; is on speaker bureaus for Alexion and UCB; and has received research support from Alexion, argenx, Immunovant, Roche, UCB, and the MG Foundation of America.
- CQ, EB, MJ, and KH are employees of argenx.
- RRM, SS, and MS are employees of ZS Associates and serve as paid consultants for argenx.


Background

Concerns for long-term reliance on glucocorticoids (GCs) in gMG

• While GC are mainstay therapy in gMG,^{1,2} they can be associated with toxicity, especially when used long term at doses of ≥10mg/day.^{3,4} Evidence of GC reduction is critical to support treatment decision-making with targeted therapies.

Steroid-sparing potential of efgartigimod (EFG)

- EFG was approved in the US in 2021 for the treatment of anti-AChR antibodypositive gMG, based on safety and efficacy demonstrated in the ADAPT trial.^{5,6}
- Several case studies globally have demonstrated substantial GC reduction with efgartigimod.⁷⁻¹²
- We recently published that GC dosing significantly decreased after 12 months of continuous efgartigimod therapy based on 266 patients from US claims.¹³

Goyal N, et al. J Neurol Sci. 2025; 123652, used under a Creative Commons CC-BY license.

Objective: To evaluate longitudinal changes in GC use among patients with gMG using chronic GC, who initiated and continued efgartigimod for 18 months.

1. Engel-Nitz NM, et al. *Muscle Nerve*. Feb 27 2018. 2. Sanders DB, et al. *Neurology*. Jul 26 2016;87(4):419-25. 3. Misra UK, et al. *Acta Neurol Belg*. Feb 2020;120(1):59-64. 4. Johnson S, et al. *Med Sci Monit*. Oct 28 2021;27:e933296. 5. Howard JF Jr, et al. *Lancet Neurol*. 2021;20(7):526-536. 6. argenx BV. VYVGART (efgartigimod alfa-fcab) [package insert]. Accessed March 11, 2024. 7. Suzuki S, et al. *Neurol Clin Pract*. Jun 2024;14(3):e200276. 8. Singer M, et al. *Muscle Nerve*. Nov 21 2023. 9. Frangiamore R et al. *Eur J Neurol*. Apr 2024;31(4):e16189. 10. Jin L, et al. *Ther Adv Neurol Disord*. 2025;18:17562864251319656. 11. Silvestri NJ. *Muscle Nerve*. Mar 2025;71(3):422-428. 12. Fuchs L, et al. *J Neurol*. Mar 25 2024. 13. Goyal N, et al. *J Neurol Sci*. 2025; 123652. EFG, efgartigimod; gMG, generalized myasthenia gravis; GC, glucocorticoid.

Dataset and study type

Dataset

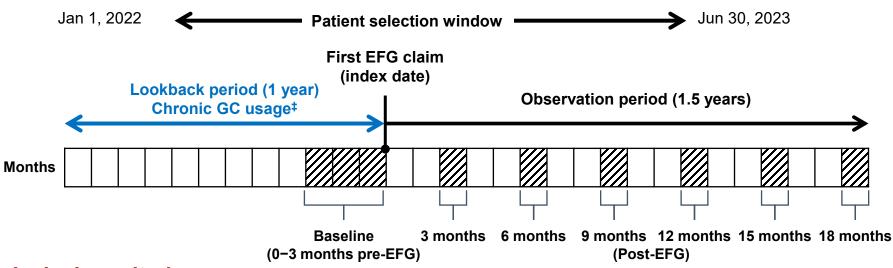
- Insurance open claims-based dataset (IQVIA)* April 2016 January 2025
- MG-ADL scores from the My VYVGART Path patient support program dataset

Retrospective cohort study

- Inclusion/exclusion criteria:
 - At least 18 months of ongoing EFG usage based on claims captured[†]
 - > First EFG claim between Jan 1 Jun 30, 2023
 - GC claims present during the 1 year prior to EFG initiation[‡]
 - Continuous quarterly claims activity to minimize missing data
 - No concomitant usage of C5, rituximab, or non-EFG FcRn inhibitors with EFG

Outcomes

- Average daily dose (ADD) of GC at 3 months (60-90 days), 6 months (150-180 days), 9 months (240-270 days), 12 months (330-365 days), 15 months (425-455 days), and 18 months (515-545 days) from baseline (pre-EFG)
- Percentage of patients whose GC ADD tapered by at least 1mg/day, 25%, 50%, or 75% from baseline (pre-EFG)
- Change in MG-ADL from baseline (pre-EFG) over time


*Based on information licensed from IQVIA: Longitudinal Access and Adjudication Data (LAAD) for the period April 2016–January 2025, reflecting estimates of real-world activity (all rights reserved). †Patients with a gap of >120 days between consecutive EFG claims were excluded. Both IV or SC formulations were considered. ‡Baseline GC usage was defined as any GC usage present in the 0-30 days immediately prior to EFG initiation, and at least 90 days of cumulative GC usage during the 1 year prior to EFG initiation.

EFG, efgartigimod; GC, glucocorticoid; MG-ADL, Myasthenia Gravis Activities of Daily Living.

Stanford University

Study design and inclusion criteria

Study design

Inclusion criteria

	N (%)
Adults (≥18 years of age) with first EFG claim Jan 1 – Jun 30, 2023	2195 (100)
Continuous quarterly activity*	1748 (80)
No concomitant usage of C5, rituximab, or non-EFG FcRn inhibitors with EFG	1387 (63)
Evidence of chronic GC usage prior to EFG initiation [†]	518 (24)
Remained on EFG treatment for at least 18 months [‡]	167 (8)
	Final study cohort

^{*}Continuous quarterly activity was defined as ≥1 record in database every quarter from 1-year pre-EFG to 545 days post-EFG initiation. †Baseline GC usage was defined as any GC usage present in the 0-30 days immediately prior to EFG initiation, and at least 90 days of cumulative GC usage during the 1 year prior to EFG initiation. ‡Patients with a gap of >120 days between consecutive EFG claims were excluded. In addition, 1 patient with incomplete GC dosing information was excluded.

EFG, efgartigimod; GC, glucocorticoid.

Stanford University

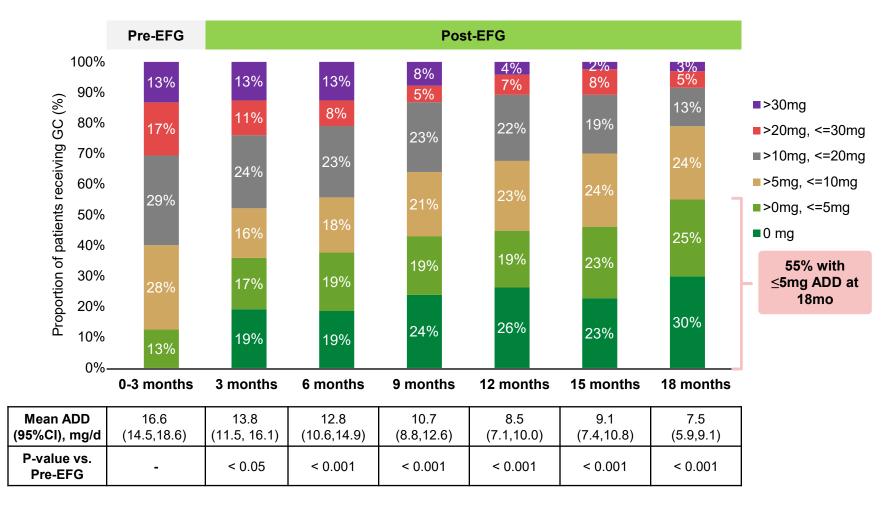
Baseline patient characteristics

Age, years	N = 167
Mean (95% CI)	60 (58, 62)
Median (IQR)	62 (50-72)
Gender, n (%)	
Male	95 (57)
Female	72 (43)
Insurance type for first EFG claim, n	(%)*
Commercial	94 (56)
Medicare	67 (40)
Medicaid / Other / Unknown	>0, <20 [†]
Common gMG comorbidities, n (%)	
Hypertension	78 (47)
Sleep disorder	47 (28)
Hyperlipidemia	43 (26)
Diabetes	42 (25)
Sleep apnea	39 (23)
Obesity	33 (20)
GERD	27 (16)
Thyroid-related disorders	20 (12)

NSIST/advanced thei	rapy [‡] usage during
1-year period prior to	EFG initiation, n (%)

NSIST only	54 (32)
Advanced therapy [‡] only	27 (16)
NSIST + advanced therapy	48 (29)
No NSIST or advanced therapy [‡]	38 (23)

- Consistent with findings from 12-months cohort in previous publication
- High proportion of comorbidities including hypertension
- >75% of patients used NSIST and/or other advanced gMG therapies[‡] concomitantly with GC prior to EFG initiation

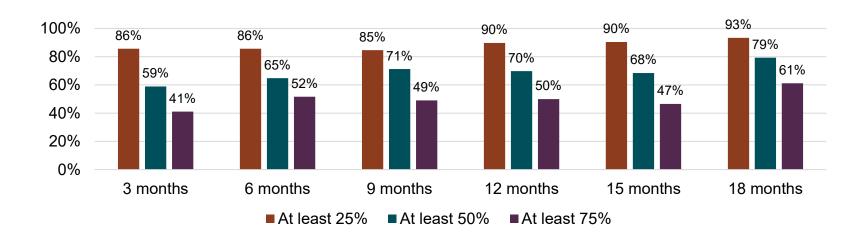

^{*}Percentages may not add up to 100% as patients may be tagged to multiple payer channels. †Patient counts greater than 0 but less than 20 have been masked. ‡Advanced therapy included IVIg/SCIg, PLEX, eculizumab, and rituximab.

CI, confidence interval; EFG, efgartigimod; GERD, gastroesophageal reflux disease; GC, glucocorticoid; gMG, generalized myasthenia gravis; IQR, interquartile range; IVIg/SCIg, intravenous or subcutaneous immunoglobulin; NSIST, nonsteroidal immunosuppressive treatment; PLEX, plasma exchange.

Stanford University

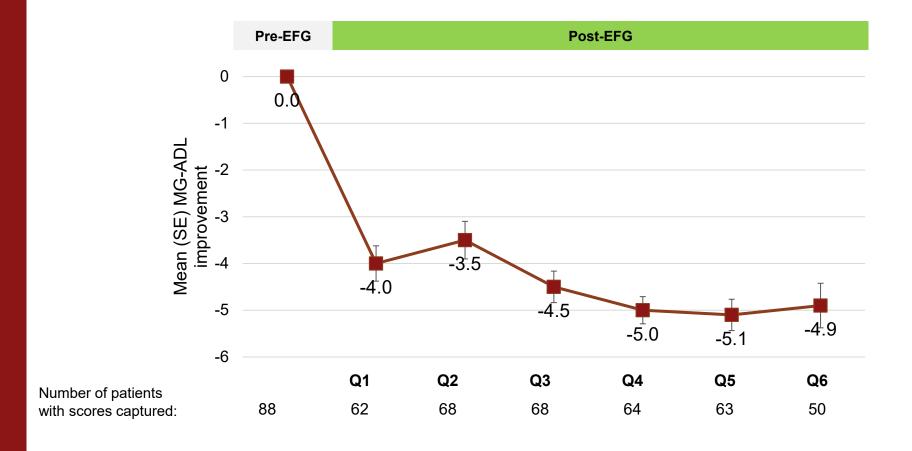
Results: GC tapering

Change in GC ADD distribution after EFG initiation over time (N=167)


^{*}P-values for ADD were calculated against the ADD at baseline (pre-EFG) using Wilcoxon signed rank tests. *P* < 0.05 was considered statistically significant. ADD, average daily dose; EFG, efgartigimod; GC, glucocorticoid. Stanford University

Results: GC tapering

Proportion of patients with GC ADD tapered, increased, or unchanged vs. pre-EFG, n (%)


	Pre-EFG	Post-EFG					
	0-3 months	3 months	6 months	9 months	12 months	15 months	18 months
Tapered (≥1mg)	-	90 (53.9)	91 (54.5)	104 (62.3)	116 (69.5)	114 (68.3)	121 (72.5)
Unchanged (<±1mg)	-	23 (13.8)	>0, <20 [†]	>0, <20 [†]	21 (12.6)	>0, <20 [†]	20 (12.0)
Increased (≥1mg)	-	54 (32.3)	60 (35.9)	45 (26.9)	30 (18.0)	34 (20.4)	26 (15.6)

Magnitude of GC ADD reduction compared to baseline, among those who tapered GC*

Results: Efficacy (MG-ADL)

MG-ADL outcomes among a subset with scores available (N=88/167)*

Patients with a baseline and at least 4 follow-up MG-ADL scores available were considered for analysis. Mean of the best MG-ADL scores recorded during each quarter after efgartigimod initiation was calculated, with the denominator in each quarter being the subset of patients with at least 1 MG-ADL captured in that quarter. ‡Quarters were defined by days after EFG initiation (Q1: 1-90 days, Q2: 91-180 days, Q3: 181-270 days, Q4: 271-365 days, Q5: 366-455 days, and Q6: 456-545 days after EFG initiation). aBaseline scores were captured before EFG initiation. **Stanford University**

EFG, efgartigimod; MG-ADL, Myasthenia Gravis Activities of Daily Living.

Conclusions and future steps

Key conclusions

- In this real-world cohort of chronic GC users, 18 months of continuous EFG therapy led to a significant and progressive reduction in GC use, while retaining improved MG-ADL scores.
 - At 18 months, the mean GC dose was reduced by over 50% from baseline (16.6 mg/day to 7.5 mg/day). Majority of patients (55%) achieved GC ADD of ≤5mg/day, and 30% had no GC usage.
 - Among a subset of patients with MG-ADL data captured, there was a significant and sustained improvement in MG-ADL scores (~5 points).

Strengths

The study enabled inclusion of a large sample size with longitudinal follow-up, with results supporting reduction of GC with the use of EFG observed in previously published case series.

Limitations

- Claims-based data analyses are subject to several inherent limitations including assumptions, potential coding errors, and risk of missing data.
- Insights into how prescribers are approaching GC tapering on EFG were not assessed and require alternative datasets to explore.

Thank you!

Research team

Gil I. Wolfe, MD University of Buffalo

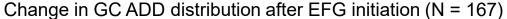
Cynthia Qi argenx, HEOR

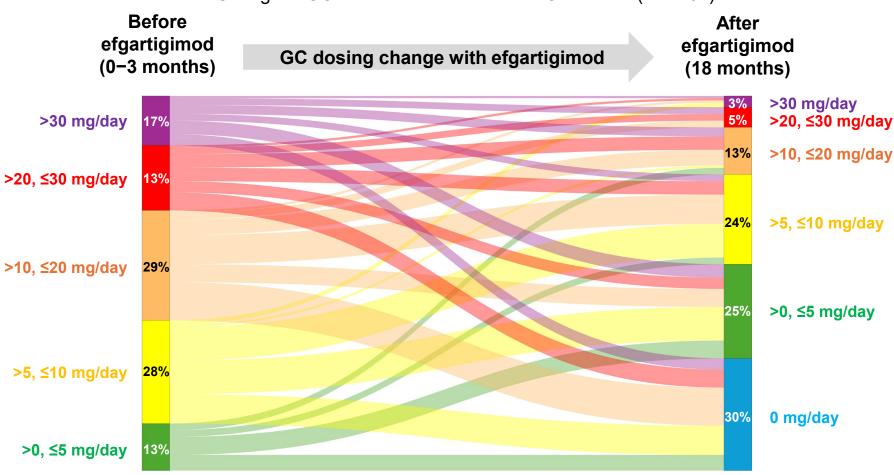
Edward Brauer argenx, Medical Affairs

Matt Jefferson, PhD argenx, Medical Affairs

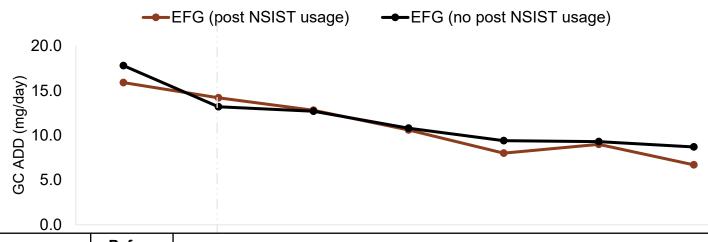
Kristin Heerlein, MD, PhD, MBA argenx, Medical Affairs

Rohit R Menon ZS Associates




Sam Selvaraj ZS Associates

Mai Sato ZS Associates


Results: Change in GC ADD distribution

Results: NSIST usage

Impact of concomitant NSIST usage on GC ADD

Mana (050/ CI) ADD	Before EFG	After EFG						
Mean (95% CI) ADD, mg/d	Baseline (0-3 months)	3 months	6 months	9 months	12 months	15 months	18 months	
No NSIST with	17.8	13.2	12.7	10.8	9.4	9.3	8.7	
efgartigimod (n = 64)	(13.8, 21.7)	(9.9, 16.4)	(9.3, 16.0)	(7.8, 13.8)	(7.1, 11.7)	(7.0,11.6)	(6.0, 11.4)	
Change from baseline	-	-4.6	-5.1	-7.0	-8.4	-8.5	-9.1	
p value*	ı	<0.05	<0.05	<0.001	<0.001	<0.001	<0.001	
NSIST usage with	15.9	14.2	12.8	10.6	8.0	9.0	6.7	
efgartigimod (n = 103)	(13.6, 18.1)	(11.1, 17.3)	(10.0, 15.7)	(8.2, 13.0)	(6.2, 9.8)	(6.6,11.3)	(4.7, 8.8)	
Change from baseline	-	-1.7	-3.1	-5.3	-7.9	-6.9	-9.2	
p value*	-	<0.05	<0.05	<0.001	<0.001	<0.001	<0.001	

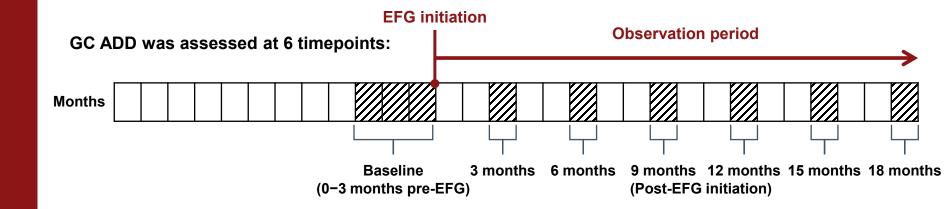
^{*}P-values were calculated using Wilcoxon signed-rank test.

Results: Driver of GC tapering

Multivariate logistic regression to explore drivers of GC tapering

		Desci	riptive	Statistical association		
Variable	Overall (N=167)	Tapered (n=121)	Not tapered (n=46)	OR (95% CI)	P	
Age, mean (SD)	59.9 (14.7)	59.8 (14.2)	60.1 (16.1)	1.04 (1.00, 1.08)	0.058	
Gender, n(%)						
M	95 (56.9)	64 (52.9)	31 (67.4)	REF	-	
F	72 (43.1)	57 (47.1)	>0, <20 [†]	2.64 (1.09, 6.79)	0.036	
Region, n(%)						
Midwest	35 (21.0)	26 (21.5)	>0, <20 [†]	REF	-	
Northeast	26 (15.6)	>0, <20 [†]	>0, <20 [†]	0.92 (0.25, 3.47)	0.90	
South	81 (48.5)	58 (47.9)	23 (50.0)	0.68 (0.23, 1.88)	0.46	
West	25 (15.0)	>0, <20 [†]	>0, <20 [†]	1.04 (0.25, 4.59)	0.96	
Insurance at efgartigimod initiation, n(%)						
Commercial	94 (56.3)	74 (61.2)	20 (43.5)	REF	-	
Medicare	67 (40.1)	44 (36.4)	23 (50.0)	0.12 (0.01, 1.39)	0.074	
Medicaid	>0, <20 [†]	>0, <20 [†]	>0, <20 [†]	0.37 (0.14, 0.97)	0.047	
Charlson Comorbidity Index						
Mean (SD)	1.2 (1.7)	1.3 (1.8)	0.9 (1.3)	1.23 (0.93, 1.69)	0.16	
At least 1 NSIST claim, n (%)						
1-year pre-EFG	102 (61.1)	82 (67.8)	20 (43.5)	2.30 (0.75, 7.26)	0.14	
18-months post-EFG	103 (61.7)	80 (66.1)	23 (50.0)	1.26 (0.39, 4.02)	0.69	
Baseline GC ADD, n(%)						
<10mg/day	62 (37.1)	34 (28.1)	28 (60.9)	REF		
≥10mg/day; <20mg/day	53 (31.7)	40 (33.1)	>0, <20 [†]	2.34 (0.98, 5.78)	0.059	
≥20mg/day; <30mg/day	29 (17.4)	25 (20.7)	>0, <20 [†]	4.12 (1.23, 16.9)	0.031	
≥30mg/day	23 (13.8)	22 (18.2)	>0, <20 [†]	33.1 (5.64, 644)	0.001	

Methods


GC ADD was defined as¹:

Total GC dose (strength x quantity)*

Total number of days within timepoint^{†1}

 GC tapering was defined as ≥1 mg reduction in GC ADD from baseline (pre-EFG). **Example:** Patient has 1 claim for 10mg tablets for 20 days, and 1 claim for 20mg tablets for 10 days during baseline period.

 $\frac{(10*20) + (20*10)}{90 \text{ days in baseline period}} = 4.4 \text{ mg/day}$

*GC claims that were within 14 days of one another were considered as part of 1 GC episode. Detailed calculation methods are included in the appendix. †GC ADD was calculated at 6 timepoints: Pre-EFG (0-90 days immediately prior to EFG initiation), Post-EFG 3 months (60-90 days post-EFG initiation), Post-EFG 6 months (150-180 days post-EFG initiation), Post-EFG 9 months (240-270 days post-EFG initiation), Post-EFG 12 months (330-365 days post-EFG initiation), Post-EFG 15 months (425-455 days post-EFG initiation), and Post-EFG 18 months (515-545 days post-EFG initiation). GC doses were converted to prednisone-equivalent strengths. Sensitivity analyses were performed wherein ADD was calculated based on the number of days of supply dispensed as the denominator.

1. DerSarkissian M, et al. *ACR Open Rheumatol.* Jun 2023;5(6):318-328. ADD, average daily dose; EFG, efgartigimod; GC, glucocorticoid.

Additional detail on IQVIA LAAD database

ROBUST COVERAGE

Greater ability to study patient populations more reliably

- Retail
- · Mail order
- Long-term care
- Lifecycle claims
- Non-retail
- Optimized coverage using direct suppliers and switch clearinghouses

PATIENT-DRIVEN METHODOLOGY

More accurate and complete record of each patient across their healthcare experience

- Patient stability
- Denormalized patient records
- Standardized methodologies for analytics

DATA INTEGRATION

Provides deeper understanding than just prescription reporting

- Pharmacy
- Medical claims (professional and institutional)
- Lifecycle claims
- Remittance
- Primary and secondary payer

SUPERIOR SUPPORT AND DELIVERY

Resources uniquely equipped to support advanced applications of IOVIA data

- Industry-leading managed care experts
- Subject matter experts trained in patient data
- Dedicated service and support team
- · On-site staff availability
- Flexible approach to reporting

Fact Sheet: Longitudinal Access and Adjudication Data (LAAD). IQVIA. Accessed 18 Feb 2024. https://www.iqvia.com/-/media/iqvia/pdfs/library/fact-sheets/iqvia-longitudinal-access-and-adjudication-data-fact-sheet-2023.pdf.