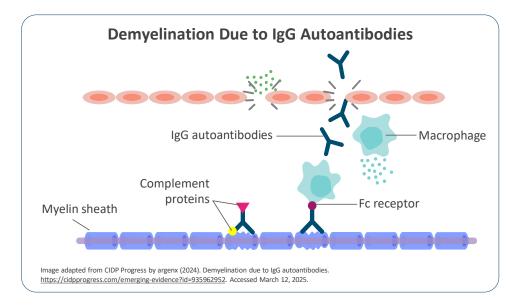
Long-Term Efficacy of Efgartigimod PH20 SC in Patients With Chronic Inflammatory Demyelinating Polyneuropathy:
Interim Results From the ADHERE+ Study

<u>Jeffrey A. Allen</u>,¹ Jie Lin,² Mark Stettner,³ Jeffrey T. Guptill,^{4,5} Kelly G. Gwathmey,⁶ Geoffrey Istas,⁵ Arne De Roeck,⁵ Satoshi Kuwabara,⁷ Giuseppe Lauria,⁸ Luis Querol,⁹ Niraja Suresh,¹⁰ Chafic Karam,¹¹ Thomas Skripuletz,¹² Simon Rinaldi,¹³ Andoni Echaniz-Laguna,¹⁴ Benjamin Van Hoorick,⁵ Ryo Yamasaki,¹⁵ Pieter A. van Doorn,¹⁶ Richard A. Lewis¹⁷

¹Department of Neurology, University of Minnesota, Minneapolis, MN, USA; ²Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; ³Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen, Germany; ⁴Department of Neurology, School of Medicine, Duke University, Durham, NC, USA; ⁵argenx, Ghent, Belgium; ⁶Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA; ⁷Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; ⁸Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy; ⁹Department of Neurology, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Spain; ¹⁰Lakeland Regional Health, Lakeland, FL, USA; ¹¹Department of Neurology, University of Philadelphia, PA, USA; ¹²Department of Neurology, Hannover Medical School, Hanover, Germany; ¹³Nuffield Department of Clinical Neurosciences, University of Oxford, OXford, OXford, UK; ¹⁴French National Reference Center for Rare Neuropathies (CERAMIC), Bicêtre University Hospital, Le Kremlin-Bicêtre, France; ¹⁵Department of Neurology, Kyushu University Hospital, Fukuoka, Japan; ¹⁶Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA

002

Presented at the American Academy of Neurology (AAN) Annual Meeting 2025; April 5–9, 2025; San Diego, CA, USA

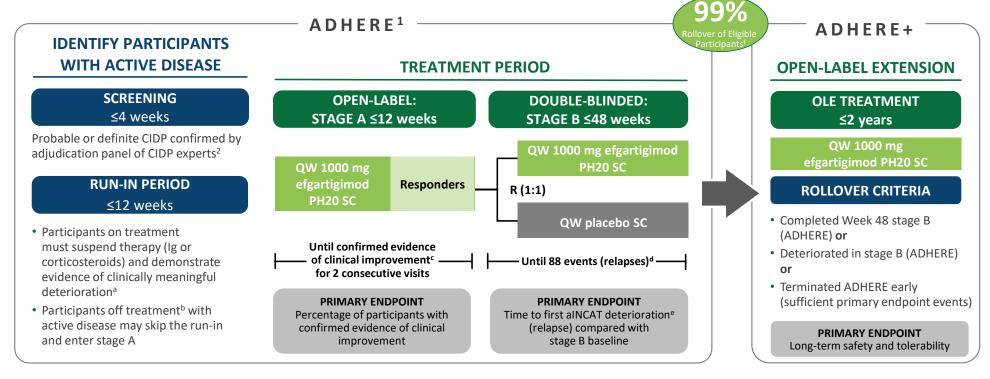

Disclosures and Acknowledgements

Jeffrey A. Allen	Akcea Therapeutics, Alexion, Alnylam Pharmaceuticals, Annexon Biosciences, argenx, CSL Behring, Grifols, Immunovant, ImmuPharma, Johnson & Johnson, Pfizer, Takeda Pharmaceuticals			
Jie Lin	argenx, Janssen, Novartis, Pfizer, Sanofi			
Mark Stettner	argenx, Bayer, Biogen Idec, Biotest, CSL Behring, Genzyme, Grifols, Immunovant, Kedrion, Merck, Novartis, Octapharma, PPTA, Roche, Sanofi-Aventis, TEVA, UCB			
Kelly G. Gwathmey	Alexion, Amgen, argenx, UCB, Xeris Pharmaceuticals			
Satoshi Kuwabara	Alexion, argenx, CSL Behring, Takeda			
Giuseppe Lauria	Biogen, Chromocell, CSL Behring, Home Biosciences, Janssen, Lilly, Sangamo Therapeutics, Vertex Pharmaceuticals, Zambon			
Luis Querol	Annexon Biosciences, Alnylam Pharmaceuticals, argenx, Avilar Therapeutics, Biogen, CIBERER, CSL Behring, Dianthus Therapeutics, Fundació La Marató, GBS/CIDP Foundation Interna Grifols, Instituto de Salud Carlos III – Ministry of Economy and Innovation (Spain), Janssen, LFB, Lundbeck, Merck, Novartis, Octapharma, Roche, Sanofi Genzyme, UCB			
Niraja Suresh	Alnylam Pharmaceuticals, Takeda Pharmaceuticals			
Chafic Karam	Alpine, Alexion, Alnylam Pharmaceuticals, Annexon Biosciences, argenx, Astra Zeneca, Biogen, Corino, CSL Behring, Genentech, Ionis, Neuroderm, Novo Nordisk, Pfizer, Sanofi, UCB Pharmaceuticals, Zai Lab			
Thomas Skripuletz	Alexion, Alnylam Pharmaceuticals, argenx, Bayer Vital, Biogen, Bristol Myers Squibb, Celgene, Centogene, CSL Behring, Euroimmun, Grifols, Hexal AG, Horizon, Janssen-Cilag, Merck Novartis, Pfizer, Roche, Sanofi, Siemens, Swedish Orphan Biovitrum, Teva, Viatris			
Simon Rinaldi	Annexon Biosciences, argenx, the Beijing Association of Holistic and Integrated Medicine, British Medical Association, CSL Behring, Dianthus, Excemed, Fresenius, GBS/CIDP Foundati International, Guillain-Barré syndrome and Related Inflammatory Neuropathies (GAIN) charity, Hansa Biopharma, the Irish Institute of Clinical Neuroscience, Medical Research Counc National Institute of Health Research (NIHR), the Pathological Society of Great Britain Ireland, Peripheral Nerve Society, Takeda Pharmaceuticals, UCB, the University of Oxford's John Fund, Wellcome Trust			
Andoni Echaniz-Laguna	Alnylam Pharmaceuticals, argenx, CSL Behring, Grifols, LFB, Pfizer, Sanofi			
Ryo Yamasaki	Alnylam Pharmaceuticals Japan, CSL Behring, FP Pharm Co, Japan Tobacco Inc, Kyowa Kirin Co Ltd, Ono Pharmaceutical Co Ltd, Takeda Pharmaceuticals			
Pieter A. van Doorn	Annexon Biosciences, argenx, Grifols, Hansa Biopharma, Immunic Therapeutics, Octapharma, Prinses Beatrix Spierfonds, Roche, Sanofi, Sanquin, Takeda Pharmaceuticals			
Richard A. Lewis	Alexion, Annexon Biosciences, argenx, Boehringer Ingelheim, CSL Behring, Dianthus, GBS/CIDP Foundation International, Grifols, Immunovant, Johnson & Johnson, Medscape, Nervosave, Novartis, Nuvig, Peripheral Nerve Society, Sanofi, Seismic, Takeda Pharmaceuticals			
Jeffrey T. Guptill Geoffrey Istas Arne De Roeck Benjamin Van Hoorick	Employees of argenx			

This study was funded by argenx. Medical writing support was provided by Envision Pharma Group and funded by argenx.

CIDP Is a Severe and Progressing Immune-Mediated Polyneuropathy

- CIDP is an autoimmune peripheral neuropathy characterized by progressive or relapsing muscle weakness and sensory disturbance and associated with a high treatment burden¹⁻⁵
- Although the exact pathophysiology of CIDP is yet to be fully understood, IgG autoantibodies play a key role in demyelination^{6–9}
- Efgartigimod PH20 SC is a coformulation of efgartigimod and recombinant human hyaluronidase PH20 (rHuPH20), which allows for rapid (30–90s single injection) SC administration^{10,11}



Efgartigimod has been shown to reduce IgG antibody levels in healthy volunteers and patients with other autoimmune diseases 13-18

CIDP, chronic inflammatory demyelinating polyneuropathy; Fc, fragment crystallizable; FcRn, neonatal Fc receptor; IgG, immunoglobulin G; SC, subcutaneous.

1. Cox ZC, et al. Clin Geriatr Med. 2021;37(2):327–45. 2. Van den Bergh PYK, et al. Eur J Neurol. 2021;28(11):3556–83. 3. Brun S, et al. Immuno. 2022;2(1):118–31. 4. Bus SRM, et al. J Neurol. 2022;269(2):945–55. 5. Gorson KC. Ther Adv Neurol Disord. 2012;5(6):359–73. 6. Querol LA, et al. Neurotherapeutics. 2022;19(3):864–73. 7. Yan WX, et al. Ann Neurol. 2003;47(6):765–75. 8. Dziadkowiak E, et al. Int J Mol Sci. 2021;23(1):179. 9. Koike H, et al. Neurol Ther. 2020;9(2):213–27. 10. Locke KW, et al. Drug Deliv. 2019;26(1):98–106. 11. VYVGART HYTRULO. Prescribing information. argenx; 2024. https://www.argenx.com/product/vyvgart-hytrulo-prescribing-information.pdf. Accessed March 12, 2025. 12. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372–88. 15. Howard JF Jr, et al. Inch Neurol. 2021;20(7):526–36. 16. Goebeler M, et al. Br J Dermatol. 2022;186(3):429–39. 17. Broome CM, et al. Lancet. 2023;402(10413):1648–59. 18. Howard JF Jr, et al. Forth Neurol. 2021;41:12844444.

Efgartigimod in CIDP: Study Designs of ADHERE and ADHERE+

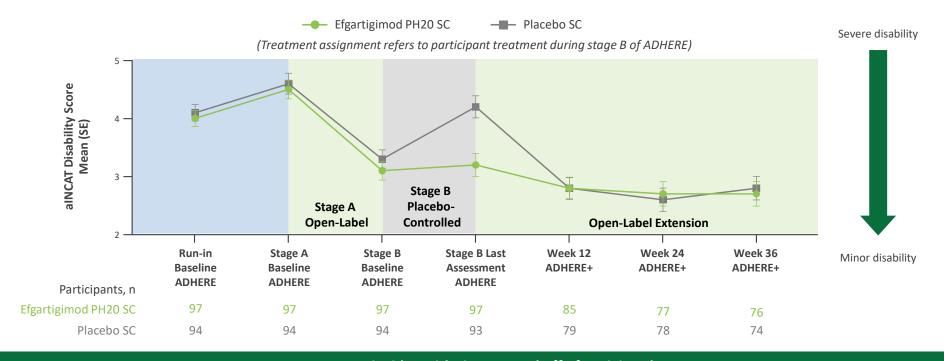
aINCAT, adjusted Inflammatory Neuropathy Cause and Treatment; CIDP, chronic inflammatory demyelinating polyneuropathy; ECI, evidence of clinical improvement; ECMD, evidence of clinically meaningful deterioration; HR, hazard ratio; Ig, immunoglobulin; INCAT, Inflammatory Neuropathy Cause and Treatment; I-RODS, Inflammatory Rasch-Built Overall Disability Scale; IVIg, intravenous immunoglobulin; OLE, open-label extension; PH20, recombinant human hyaluronidase PH20; QW, once weekly; R, randomization; SC, subcutaneous; SCIg, subcutaneous immunoglobulin.

*ECMD was defined as an alNCAT increase of ≥1 points, an I-RODS decrease of ≥4 points (centile metric), or a grip strength decrease of ≥8 kPa. *Dff treatment was defined as participants who had never received CIDP treatment (treatment (as participants who had never received CIDP treatment (corticosteroids, IVIg, or SCIg) within 6 months of trial entry. ECI was defined as a clinical improvement on the parameters that the participant worsened in during run-in (24-point increase in I-RODS and/or ≥8-kPa increase in mean graph as a clinical improvement on the parameters that the participant worsened in during run-in (24-point increase in I-RODS and/or ≥8-kPa increase in mean graph as a clinical improvement on the parameters that the participant worsened in during run-in (24-point increase in lance as a lance as a sesses of events were achieved in stage B and was based on the HR for the time to first alnCAT deterioration (ie, relapse). *alnCAT deterioration was defined as a ≥1-point increase in alnCAT core compared with stage B baseline. *h=228/229. 229 participants who increase in alnCAT compared with stage B baseline. *h=228/229. 229 participants who received ≥1 dose of efgartigimed PH20 SC.

1. Allen JA, et al. Lancet Neurol. 2024;23(10):1013-24. 2. Van den Bergh PYK, et al. Eur J Neurol. 2010;17(3):356-63.

Baseline Characteristics Were Similar Between ADHERE Stages A/B and ADHERE+, and Well-Balanced Between Treatment Groups in ADHERE Stage B

	ADHERE ¹			ADHERE+e	
	Open-Label Stage A Double-Blinded Stage B		ed Stage B	Open-Label Extension	
	Efgartigimod PH20 SC (N=322)	Efgartigimod PH20 SC (N=111)	Placebo SC (N=110)	Efgartigimod PH20 SC (N=228)	
Scores shown were assessed at screening in ADHERE and baselin	e in ADHERE+				
Age, year, mean (SD)	54.0 (13.9)	54.5 (13.2)	51.3 (14.5)	53.2 (14.1)	
Sex, male, n (%)	208 (64.6)	73 (65.8)	69 (62.7)	142 (62.3)	
Time since diagnosis, years, mean (SD)	4.9 (6.1)	3.7 (4.4)	3.8 (4.7)	4.9 (5.6)	
Typical CIDP diagnosis, n (%)	268 (83.2)	97 (87.4)	95 (86.4)	199 (87.3)	
Unstable active disease (CDAS: 5), ^a n (%)	197 (61.2)	74 (66.7)	76 (69.1)	151 (66.2)	
Prior treatment (within past 6 months), n (%) Corticosteroids Immunoglobulins (IVIg, SCIg) Off treatment ^b	63 (19.6) 165 (51.2) 94 (29.2)	24 (21.6) 48 (43.2) 39 (35.1)	23 (20.9) 48 (43.6) 39 (35.5)	51 (22.4) 104 (45.6) 73 (32.0)	
Scores shown were assessed at beginning of each stage for ADH	ERE and at ADHERE stage A base	line for ADHERE+			
INCAT score, mean (SD) ^c	4.6 (1.7)	3.1 (1.5)	3.3 (1.6)	4.5 (1.6)	
I-RODS score, mean (SD) ^c	40.1 (14.7)	53.6 (17.9)	51.2 (15.4)	41.2 (15.4)	
Grip strength (dominant hand), kPa, mean (SD) ^d	38.5 (24.2)	54.9 (23.6)	58.0 (25.1)	39.0 (23.6)	


CDAS, CIDP disease activity status; CIDP, chronic inflammatory demyelinating polyneuropathy; INCAT, Inflammatory Neuropathy Cause and Treatment; I-RODS, Inflammatory Rasch-built Overall Disability Scale; IVIg, intravenous immunoglobulin; PH20, recombinant human hyaluronidase PH20; SC, subcutaneous; SCIg, subcutaneous immunoglobulin; SD, standard deviation.

ADHERE+ data cut-off: February 16, 2024.

^aUnstable active disease was defined as abnormal examination with progressive or relapsing course. ^{2 b}Off treatment was defined as participants who had never received CIDP treatment (treatment naïve) or who had not received CIDP treatment (corticosteroids, IVIg, or SCIg) within 6 months of trial entry. ^cLower scores represent improvement on INCAT, while higher scores represent improvement for I-RODS. ^dGrip strength scores in nondominant hand were similar. ^cParticipants in ADHERE+ completed or deteriorated during ADHERE stage B, or terminated ADHERE early as the 88th event has been reached.

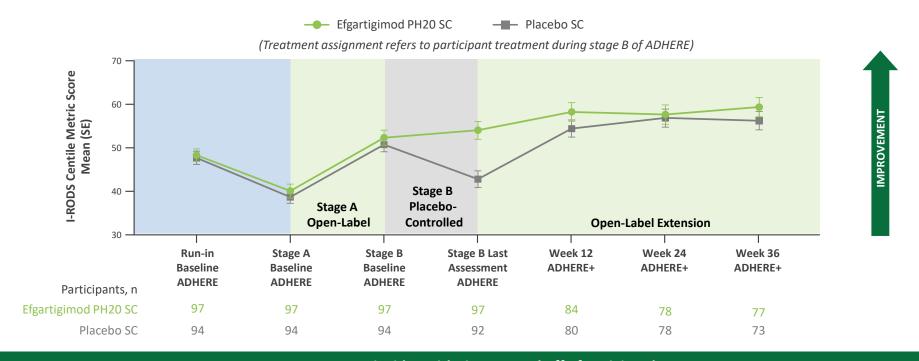
^{1.} Allen JA, et al. Lancet Neurol. 2024;23(10):1013-24. 2. Gorson KC, et al. J Peripher Nerv Syst. 2010;15(4):326-33.

Among ADHERE Stage A Responders, Efgartigimod PH20 SC Treatment Resulted in Clinically Meaningful aINCAT Score^a Improvements in ADHERE+

Improvement coincides with time on and off efgartigimod treatment.

For stage A responders, mean efficacy scores on efgartigimod in ADHERE+ were better than at ADHERE run-in baseline.

aINCAT, adjusted Inflammatory Neuropathy Cause and Treatment; PH20, recombinant human hyaluronidase PH20; SC, subcutaneous; SE, standard error.


 $^{\mathrm{a}}\mathrm{A}$ decrease of $\geq \! 1$ points in aINCAT score $^{\mathrm{a}}$ is considered a minimal clinically important difference $^{\mathrm{a}}\mathrm{A}$

Post hoc analysis included ADHERE stage A responders with run-in baseline values.

ADHERE+ data cut-off: February 16, 2024.

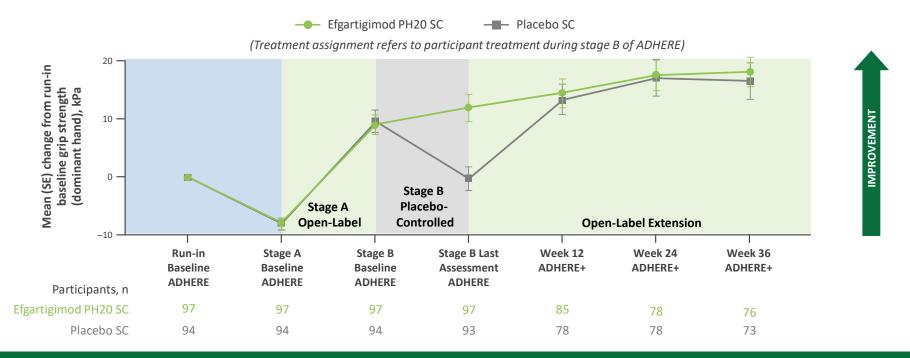
1. Breiner A, et al. Muscle Nerve. 2014;50(1):40-6. 2. Van den Bergh PYK. Eur J Neurol. 2021;28(11):3556-83.

Among ADHERE Stage A Responders, Efgartigimod PH20 SC Treatment Resulted in Clinically Meaningful Improvements in I-RODS Centile Metric Score^a in ADHERE+

Improvement coincides with time on and off efgartigimod treatment.

For stage A responders, mean efficacy scores on efgartigimod in ADHERE+ were better than at ADHERE run-in baseline.

 $I-RODS, Inflammatory \ Rasch-built \ Overall \ Disability \ Scale; PH20, recombinant \ human \ hyaluronidase \ PH20; SC, subcutaneous; SE, standard \ error.$


^aAn increase of ≥4 points in I-RODS score¹ is considered a minimal clinically important difference².

Post hoc analysis included ADHERE stage A responders with run-in baseline values.

ADHERE+ data cut-off: February 16, 2024.

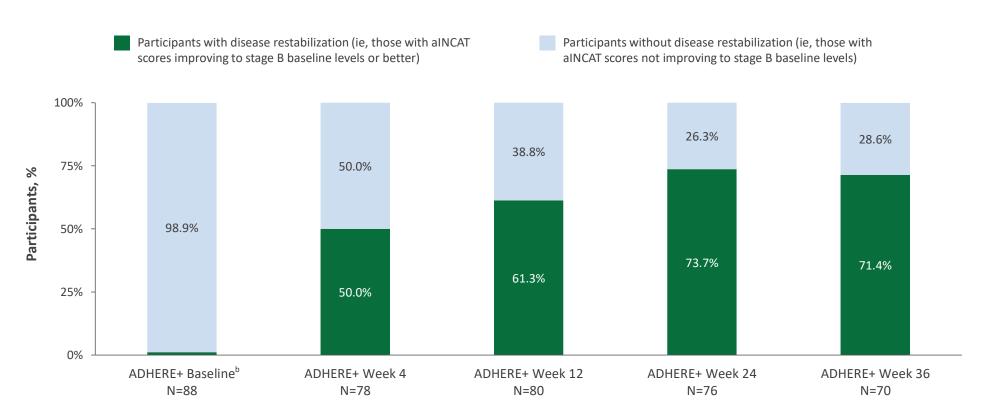
1. van Nes SI, et al. Neurology. 2011;76(4):337-45. 2. Van den Bergh PYK, et al. Eur J Neurol. 2021;28(11):3556-83.

Among ADHERE Stage A Responders, Efgartigimod PH20 SC Treatment Resulted in Clinically Meaningful Improvement in Dominant Hand Grip Strength^a in ADHERE+

Improvement coincides with time on and off efgartigimod treatment.

For stage A responders, mean efficacy scores on efgartigimod in ADHERE+ were better than at ADHERE run-in baseline.

PH20, recombinant human hyaluronidase PH20; SC, subcutaneous; SE, standard error


^aAn increase of ≥8 kPa in grip strength¹ is considered a minimal clinically important difference².

Post hoc analysis included ADHERE stage A responders with run-in baseline values.

ADHERE+ data cut-off: February 16, 2024.

1. Vanhoutte EK. Eur J Neurol. 2013;20(5):748-55. 2. Van den Bergh PYK, et al. Eur J Neurol. 2021;28(11):3556-83.

Among Participants With Disease Relapse^a in ADHERE Stage B, Restabilization Occurred Early and Increased Over Time in ADHERE+

aINCAT, adjusted Inflammatory Neuropathy Cause and Treatment; PH20, recombinant human hyaluronidase PH20; SC, subcutaneous.

^aDisease relapse was based on aINCAT deterioration, defined as a ≥1-point increase in aINCAT compared with stage B baseline, which was confirmed at a consecutive visit after the first 1-point increase in aINCAT or not confirmed for participants with ≥2-point increase in aINCAT compared with stage B baseline. An aINCAT score of ≤ −1 represents an improvement, a score of 0 represents no change, and a score of ≥1 represents deterioration. bADHERE+ Baseline: efgartigimod PH20 SC, n=30; placebo SC, n=58; treatment assignment refers to participant treatment during Stage B of ADHERE.

Post hoc analysis included participants in ADHERE+ with disease relapse in ADHERE stage B.

ADHERE+ data cut-off: February 16, 2024.

Efgartigimod Was Well Tolerated and Most TEAEs Were Mild or Moderate in Severity in ADHERE and ADHERE+

		ADHERE+ Open-Label Extension			
	Open-Label Stage A Double-Blinded Stage B		ded Stage B	Mean (SD) study duration ^c = 60.61 (32.87) weeks	
n (%) [event rate ^a]	Efgartigimod PH20 SC (N=322; PYFU=46.9)	Efgartigimod PH20 SC (n=111; PYFU=56.7)	Placebo (n=110; PYFU=42.1)	Efgartigimod PH20 SC (N=228; PYFU=263.0)	
Any TEAE	204 (63.4) [13.4]	71 (64.0) [3.5]	62 (56.4) [5.1]	171 (75.0) [3.1]	
Any SAE	21 (6.5) [0.5]	6 (5.4) [0.1]	6 (5.5) [0.2]	35 (15.4) [0.25]	
Any injection site reactions	62 (19.3) [2.6]	16 (14.4) [0.4]	7 (6.4) [0.2]	24 (10.6) [0.18]	
Discontinued due to TEAEs	22 (6.8) [0.5]	3 (2.7) [0.05]	1 (0.9) [0.02]	18 (7.9) [0.14]	
Deaths ^b	2 (0.6) [0.04]	0	1 (0.9) [0.02]	2 (0.9) [0.008]	
Most common TEAEs (≥5% of participants in the tot	al group in ADHERE+)			•	
COVID-19	7 (2.2) [0.17]	19 (17.1) [0.35]	14 (12.7) [0.33]	37 (16.2) [0.14]	
Nasopharyngitis	5 (1.6) [0.11]	5 (4.5) [0.09]	3 (2.7) [0.07]	16 (7.0) [0.08]	
Upper respiratory tract infection	11 (3.4) [0.26]	2 (1.8) [0.05]	11 (10.0) [0.26]	24 (10.5) [0.15]	
Urinary tract infection	5 (1.6) [0.13]	2 (1.8) [0.05]	2 (1.8) [0.05]	12 (5.3) [0.06]	
Headache	16 (5.0) [0.6]	4 (3.6) [0.11]	2 (1.8) [0.05]	14 (6.1) [0.09]	

AE, adverse event; CIDP, chronic inflammatory demyelinating polyneuropathy; COVID-19, coronavirus disease 2019; PH20, recombinant human hyaluronidase PH20; PYFU, participants years of follow-up; SAE, serious adverse event; SC, subcutaneous; TEAE, treatment-emergent adverse event.

^aEvent rates were calculated as the number of events divided by the PYFU. ^bTwo deaths (cardiac arrest and deterioration of CIDP) in ADHERE stage A were considered unlikely related to efgartigimod PH20 SC by the investigator; one death (pneumonia) in the placebo SC arm of ADHERE stage B was considered treatment related by the investigator; in ADHERE+, one participant had a fatal SAE of CIDP deterioration (considered to efgartigimod PH20 SC by the investigator) and one participant had a fatal SAE of cardiac arrest (considered not related to efgartigimod PH20 SC or study procedures by the investigator and sponsor). ^cStudy duration = (date of last contact – earliest date of informed consent form or date of rollover + 1 day) / 7.

ADHERE+ data cut-off: February 16, 2024.

^{1.} Allen JA, et al. Lancet Neurol. 2024;23(10):1013-24.

Conclusions

Interim results from the ongoing ADHERE+ trial indicate that treatment with efgartigimod PH20 SC results in long-term clinical efficacy in participants with CIDP

• Clinically meaningful improvements in functional ability and dominant hand grip strength in ADHERE+, irrespective of ADHERE stage B treatment, were observed with efgartigimod PH20 SC

Majority of participants on efgartigimod PH20 SC who experienced disease relapse during ADHERE stage B restabilized, and half did so as early as Week 4 of ADHERE+

Weekly efgartigimod PH20 SC remained well tolerated

• A similar safety profile was observed between ADHERE and ADHERE+, with no increased rate or severity of TEAEs with longer exposure