

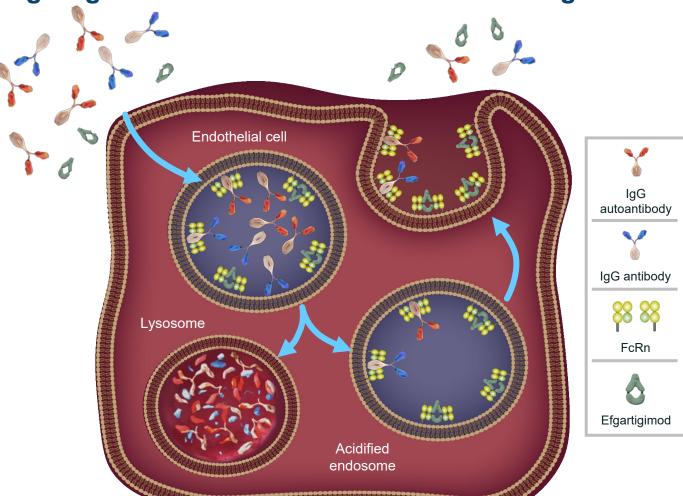
Combined Analyses of Participants With Anti-Acetylcholine Receptor Seronegative Generalized Myasthenia Gravis Treated With Efgartigimod Across Clinical Studies

James F. Howard Jr,¹ Edward Brauer,² Tuan Vu,³ Renato Mantegazza,⁴ Andreas Meisel,⁵ Kimiaki Utsugisawa,⁶ Vera Bril^{7,8}

Efgartigimod PH20 SC

Long-term, OLE

Efgartigimod PH20 SC 1000 m


Study duration: ≤3 years

Efgartigimod PH20 SC: n=179

¹Department of Neurology, The University of North Carolina, Chapel Hill, North Carolina, USA; ²argenx, Ghent, Belgium; ³Department of Neurology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ⁵Department of Neurology and Neurology and Neuro Cure Clinical Research Center, Charité – Universitätsmedizin Berlin, Germany; ⁶Department of Neurology, Hanamaki, Japan; ⁷Ellen & Martin Prosserman Centre for Neurology, Hanamaki, Japan; ⁷Ellen & Martin Prosserman Centre for Neurology, Hanamaki, Japan; ⁸University of Toronto, Ontario, Canada; ⁸University of Toronto, Toronto, Ontario, Canada; ⁸University of Toronto, Ontario, Ontario, Canada; ⁸University of Toronto, Ontario, Ontario, Canada; ⁸University of Toronto, Ontario, Onta

INTRODUCTION

Efgartigimod Mechanism of Action: Blocking FcRn

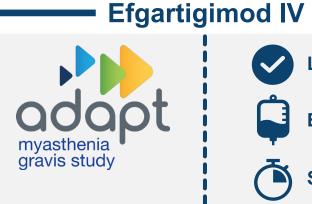
- Efgartigimod is an IgG1 antibody Fc fragment that has been engineered for increased affinity to FcRn, and is uniquely composed of the only part of the IgG antibody that normally
- Efgartigimod selectively reduces IgG by blocking FcRnmediated IgG recycling without impacting antibody production, albumin levels, or other parts of the immune system¹⁻³
- Efgartigimod PH20 SC is a coformulation of efgartigimod and recombinant human hyaluronidase PH20 (rHuPH20), which allows for rapid SC administration of larger volumes^{4,5}
- PK/PD modeling and phase 3 data (ADAPT-SC) have demonstrated that 4 once-weekly administrations of 1000 mg efgartigimod PH20 SC and 10 mg/kg efgartigimod IV result in comparable decreases in IgG levels⁵

Clinical Challenges in the Management of AChR-Ab- gMG

- AChR-Ab- gMG affects a heterogenous and potentially difficult-todiagnose and treat patient population with high unmet clinical need who have historically been excluded from clinical trials^{2,6-8}
- The phase 3 ADAPT SERON clinical trial (NCT06298552) is currently underway to evaluate the safety and efficacy of efgartigimod IV in patients with AChR-Ab- gMG

METHODS

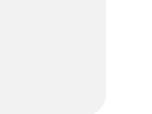
Placebo-controlled, randomized Efgartigimod 10 mg/kg IV


Placebo: n=83

Study duration: 26 weeks

noninferiority, PD trial

Efgartigimod 10 mg/kg IV
Efgartigimod PH20 SC 1000 mg


Study duration: 10 weeks

adapt

Improvements in MG-ADL were seen consistently at Week 3 in participants with AChR-Ab- gMG across multiple cycles

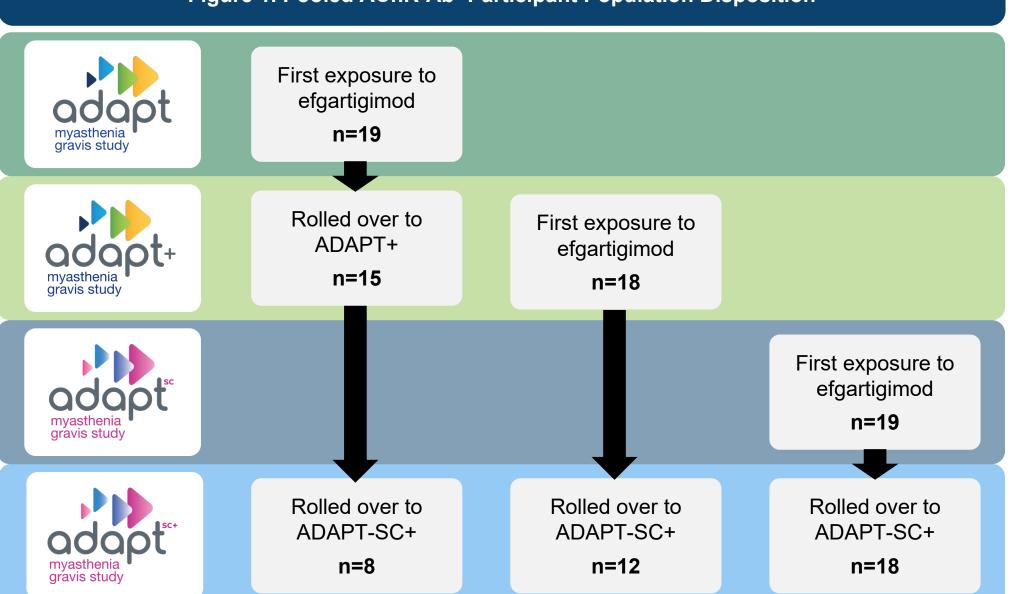
Patients with AChR-Ab- gMG have a high unmet clinical need and have historically

Both IV and SC efgartigimod were well tolerated in participants with AChR-Ab- gMG in

ADAPT/ADAPT+ and ADAPT-SC/ADAPT-SC+, with no new safety signals observed

SUMMARY

been excluded from clinical trials


IV and SC efgartigimod led to clinically meaningful improvements in MG-ADL for participants with AChR-Ab- gMG, with some achieving MSE across cycles

The ADAPT SERON study evaluating the safety and efficacy of efgartigimod IV in patients with AChR-Ab- gMG is actively recruiting

RESULTS

Figure 1. Pooled AChR-Ab- Participant Population Disposition

- Across all participants (N=262) in the pooled population (AChR-Ab+ (n=206), AChR-Ab- (n=56)), the total follow-up was 500.4 PY of exposure
- In AChR-Ab+ participants, the total follow-up was 385.5 PY
- In AChR-Ab- participants, the total follow-up was 114.9 PY

AChR-Ab-, acetylcholine receptor antibody seronegative; AChR-Ab+, acetylcholine receptor antibody seropositive; ER, event rate per participant years of follow-up; Fc, fragment crystallizable region; FcRn, neonatal Fc receptor; gMG, generalized myasthenia gravis; Ig, immunoglobulin; IV, intravenous; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; MSE, minimal symptom expression; OLE, open-label extension; PD, pharmacodynamic; PK, pharmacokinetic; PY, participant years; QMG, Quantitative Myasthenia Gravis; rHuPH20, recombinant human hyaluronidase PH20; SC, subcutaneous; TEAE, treatment-emergent adverse event.

1. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372-4386. 2. Howard JF Jr, et al. Lancet Neurol. 2021;20(7):526-536. 3. Guptill JT, et al. Autoimmunity. 2022;55(8):620-631 4. Study ARGX-113-2001 (ADAPT-SC) Clinical Trial Protocol v2.0, 02 Jul 2021. 5. Locke KW, et al. Drug Deliv. 2019;26(1):98-106. 6. Gilhus NE, Verschuuren JJ. Lancet Neurol. 2015;14(10):1023-1036. 7. Vu T, et al. NEJM Evid. 2022;1(5):1-12. 8. Howard JF Jr, et al. Lancet Neurol. 2017;16(12):976-986

Table 1. Baseline Demographics and Disease Characteristics Overall and AChR-Ab- Pooled Populations

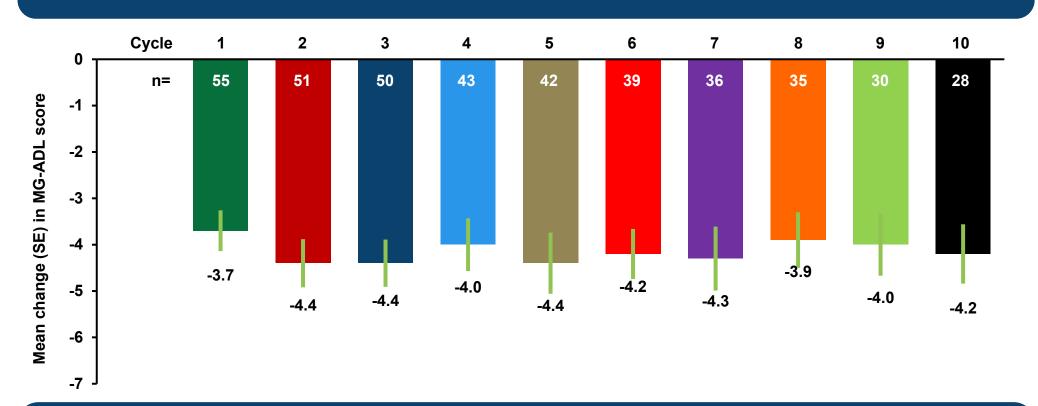
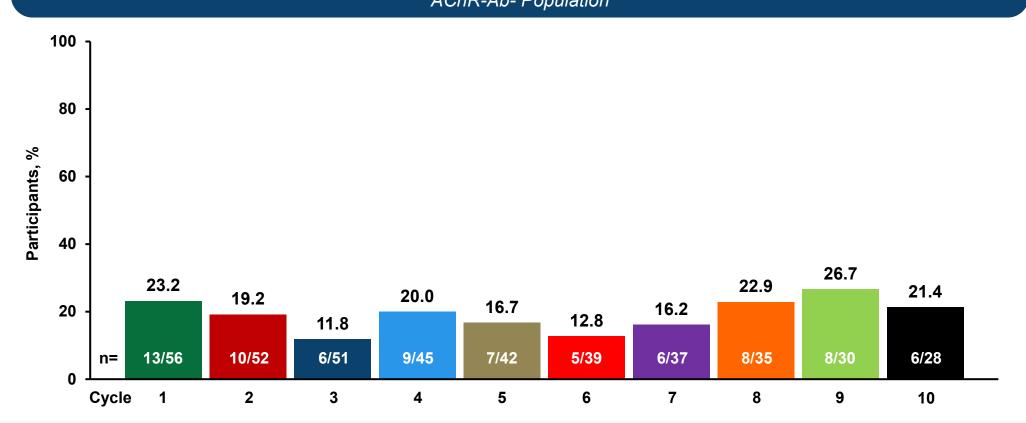

	Overall Population (N=262)	Pooled AChR-Ab- Population (n=56)
Age, y, mean, (SD)	49.6 (15.4)	48.1 (13.2)
Sex, female, n (%)	175 (66.8)	45 (80.4)
Time since gMG diagnosis, mean, y (SD)	8.6 (8.0)	8.7 (8.1)
MG-ADL score, mean (SD)	9.1 (2.7)	10.1 (3.1)
QMG score, mean (SD)	15.8 (4.7)	17.1 (4.7)
MGFA Disease Class at screening, n (%)		
Class II	108 (41.2)	21 (37.5)
Class III	144 (55.0)	32 (57.1)
Class IV	10 (3.8)	3 (5.4)

Table 2. Summary of TEAEs Overall Study Populations


	— AD	DAPT —	— AD	APT+ —	ADAPT-SC				- ADAPT-SC+ -	
	Efgartigimod IV (n=84) [34.9 PY]		Efgartigimod IV (n=145) [229.0 PY]		Efgartigimod IV (n=55) [10.5 PY]		Efgartigimod PH20 SC (n=55) [10.7 PY]		Efgartigimod PH20 SC (n=179) [193.4 PY]	
	ERª	n (%)	ERª	n (%)	ERª	n (%)	ERa	n (%)	ERª	n (%)
AEs	7.22	65 (77.4)	3.53	124 (85.5)	7.62	28 (50.9)	12.43	37 (67.3)	8.95	152 (84.9)
rious TEAEs	0.11	4 (4.8)	0.24	36 (24.8)	0.48	4 (7.3)	0.93	8 (14.5)	0.26	33 (18.4)
scontinued due to TEAE	0.20	3 (3.6)	0.06	12 (8.3)	0	0	0.19	2 (3.6)	0.03	4 (2.2)
was calculated as number of ev	ents per to	tal PY of follow	-up.							

ACKNOWLEDGMENTS AND DISCLOSURES: The authors gratefully acknowledge the ADAPT, ADAPT+, ADAPT-SC, and ADAPT-SC+ trial participants and investigators. The ADAPT, ADAPT+, ADAPT-SC, and ADAPT-SC+ trials were funded by argenx. Medical writing and editorial support for this presentation were provided by Precision AQ and funded by argenx. EB: argenx. JFH: AcademicCME, Alexion AstraZeneca Rare Disease, argenx, Biologix Pharma, Cartesian, Centers for Disease Control and Prevention, F. Hoffmann-LaRoche Ltd, Horizon Therapeutics plc, Medscape CME, Merck EMB Serono, MGFA, Muscular Dystrophy Association, NIH, NMD Pharma, Novartis Pharma, PCORI, PeerView CME, PlatformQ CME, Ra Pharmaceuticals/UCB Bioscience, Regeneron Pharmaceuticals, Sanofi US, Takeda, Toleranzia AB, UCB Bioscience, and Zai Labs. TV: Alexion/AstraZeneca, Allergan/Abbvie, Amgen, argenx, Cartesian, CSL Behring, Dianthus, ImmunAbs, Immunovant, Johnson & Johnson, Regeneron, Remegen, and UCB. RM: Alexion, argenx, Biogen, BioMarin, Catalyst, Merck, Ra, Roche, Teva, and UCB. AM: Alexion, argenx, German Myasthenia Gravis Society, Grifols, Hormosan Pharma GmbH, Janssen, Merck, Octapharma, and UCB. KU: Alexion, argenx, Chugai, Janssen, Japan Blood Products Organization, Merck, Mitsubishi Tanabe Pharma, UCB, and Viela Bio (now Horizon). VB: Akcea, Alexion AstraZeneca, argenx, CSL, Grifols, Immunovant, Ionis, Momenta (J&J), Octapharma, Takeda, UCB, and Viela.

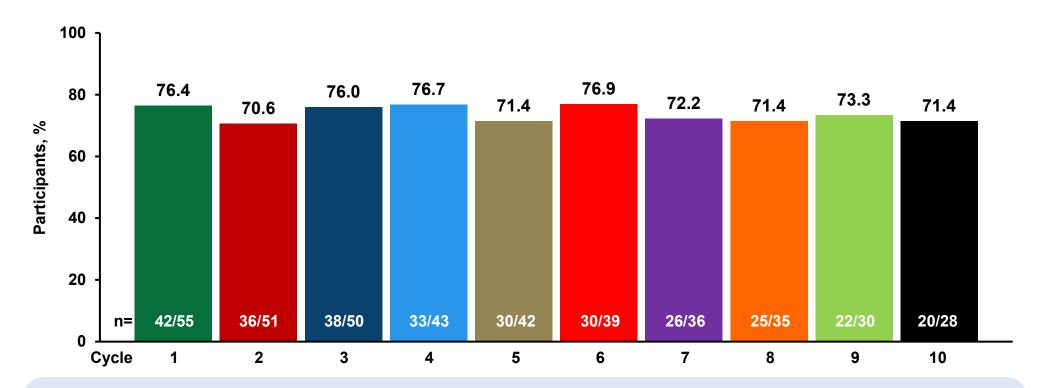

Figure 2. Mean Change From Cycle Baseline in MG-ADL at Week 3 by Cycle Pooled AChR-Ab- Population

Figure 4. Minimal Symptom Expression (MG-ADL total score of 0 or 1 at any time during a cycle) by Cycle AChR-Ab- Population

Figure 3. Clinically Meaningful Improvement (Decrease of ≥2 in MG-ADL total score) at Week 3 by Cycle Pooled AChR-Ab- Population

Scan here to learn more about the ADAPT SERON study examining efgartigimod in participants with AChR-Ab- gMG

