Long-Term Safety, Tolerability, and Efficacy of Subcutaneous Efgartigimod PH20 in Participants With Generalized Myasthenia Gravis: Interim Results of the ADAPT-SC+ Study

Yuebing Li,¹ James F. Howard Jr.,² Tuan Vu,³ Denis Korobko,⁴ Sophie Steeland,⁵ Benjamin Van Hoorick,⁵ Jana Podhorna,⁵ Moana Hodari,⁵ Kimiaki Utsugisawa,⁶ Francesco Sacca,⁷ Jan L. De Bleecker,⁸ Renato Mantegazza,⁹ and the ADAPT-SC+ Study Group ¹Cleveland Clinic, Cleveland, Ohio, USA; ²Department of Neurology, The University of South Florida, USA; ³Department of Neurology, University of South Florida, USA; ⁴State Budgetary Healthcare Institution of Novosibirsk Regional Clinical Hospital, Novosibirsk, Russia; ⁵argenx, Ghent, Belgium; ⁶Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan; ⁷NRSO Department of Neuroimmunology and Neuromuscular Diseases, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy

INTRODUCTION

212

Efgartigimod Mechanism of Action: Blocking FcRn

- FcRn recycles IgG antibodies and albumin. This recycling and salvage from lysosomal degradation results in IgG antibodies having the longest half-life and being the most abundant of all immunoglobulins¹⁻³
- Blocking FcRn to selectively reduce IgG levels is therefore a rational therapeutic approach in patients with IgG-mediated autoimmune diseases^{1,2}
- Efgartigimod is an IgG1 antibody Fc fragment that has been engineered for increased affinity to FcRn, and is uniquely composed of the only part of the IgG antibody that normally binds FcRn¹
- Efgartigimod selectively reduces IgG by blocking FcRn-mediated IgG recycling without impacting antibody production, albumin levels, or other parts of the immune svstem^{1,4,5}
- Efgartigimod prevents IgG recycling by blocking IgG antibodies from binding to FcRn, with unbound IgG antibodies being degraded^{1,4}
- Efgartigimod PH20 SC is a coformulation of efgartigimod and recombinant human hyaluronidase PH20 (rHuPH20), which allows for rapid SC administration of larger volumes^{6,7}
- PK/PD modeling and phase 3 data (ADAPT-SC) have demonstrated 4 once-weekly administrations of 1000 mg efgartigimod PH20 SC and 10 mg/kg efgartigimod IV result in comparable decreases in IgG levels^{6,8}

RESULTS

Table 1. Participant Demographics and Baseline Characteristics Overall and AChR-Ab+ Population

	Efgartigimod PH20 SC Overall (n=179)	Efgartigimod PH20 SC AChR-Ab+ (n=141)		
Age, years, mean (SD)	50.7 (15.5)	51.0 (15.9)		
Sex, female, n (%)	119 (66.5)	90 (63.8)		
Weight, kg, median (Q1-Q3)	76.9 (64.0-89.8)	77.0 (63.0-92.0)		
AChR-Ab+, n (%)	141 (78.8)	141 (100)		
Total MG-ADL score, mean (SD)	7.9 (3.4)	7.6 (3.4)		
Total MG-QoL15r score, mean (SD)	13.6 (6.9)	13.1 (6.8)		
MG therapy during the first year, n (%)				
Any steroid	128 (71.5)	103 (73.0)		
Any NSIST	89 (49.7)	67 (47.5)		
Any AChEI	150 (83.8)	122 (86.5)		
Steroid + NSIST	69 (38.5)	53 (37.6)		
AChEI only	29 (16.2)	23 (16.3)		

184 participants rolled over from ADAPT-SC (n=105) and ADAPT+ (n=79)

IT9 participants (141 AChR-Ab+ and 38 AChR-Ab-) received ≥1 dose of efgartigimod PH20 SC in ADAPT-SC+ through December 2022, with a mean (SD), median, and maximum study duration for all participants of 412.9 (104.52), 451, and 585 days, respectively

Any TEAE Any TEAE grade ≥3 Any serious TEAE Any injection site reaction Fatal TEAE^b Discontinued study treatment Most commonly observed TEA Injection site erythema COVID-19 Headache Nasopharyngitis Diarrhea Injection site pain

Injection site pruritus Injection site bruising

^aEvent rate was calculated as number of events per total PYFU. ^bFatal events (metastatic renal cell cancer, cardiac arrest, pulmonary mass, and COVID-19/respiratory failure) were not related to efgartigimod PH20 SC treatment, as determined by investigators. °Treatment discontinuations were due to metastatic renal cell cancer (Cycle 1, death), cardiac arrest (Cycle 2, death), COVID-19/respiratory failure (Cycle 3, death), and MG crisis (Cycle 1). ^dMost frequent AEs occurring in >10% of participants receiving efgartigimod PH20 SC.

ABBREVIATIONS

AChEI, acetylcholinesterase inhibitor; AChR-Ab, acetylcholine receptor antibody; AE, adverse event; CMI, clinically meaningful improvement; EQ-5D-5L VAS, EuroQoL 5-Dimension, 5-Level Visual Analog Scale; ER, event rate; Fc, fragment crystallizable region; FcRn, neonatal Fc receptor; gMG, generalized myasthenia gravis; Ig, immunoglobulin; IMP, investigational medicinal product; IV, intravenous; MG, myasthenia gravis; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; MG-QoL15r, Myasthenia Gravis Quality of Life 15-Item Questionnaire, Revised; MSE, minimal symptom expression; NSIST, nonsteroidal immunosuppressive therapy; OLE, open-label extension; PD, pharmacodynamic; PK, pharmacokinetic; PYFU, participant years of follow-up (sum of follow-up time of all participants expressed in years in the applicable period); rHuPH20, recombinant human hyaluronidase PH20; SC, subcutaneous; TEAE, treatment-emergent adverse event.

ACKNOWLEDGMENTS AND DISCLOSURES: The authors gratefully acknowledge the ADAPT+, ADAPT-SC, and ADAPT-SC+ trial participants and investigators. YL: argenx, UCB, Alexion, Catalyst, and Immunovant. JFH: Ad Scientiam, Alexion AstraZeneca Rare Disease Control and Prevention, MGFA, Muscular Dystrophy Association, NIH, PCORI, UCB, AcademicCME, Biologix, CheckRare, F. Hoffmann-LaRoche, Horizon (now Amgen), Medscape, Merck EMB Serono, NMD, Novartis, PeerView, Physicians' Education Resource (PER), PlatformQ, Regeneron, Sanofi US, UCB Pharma, Zai Labs, and Toleranzia AB. TV: Alexion, argenx, CSL Behring, Allergan/Abbvie, Alexion/AstraZeneca, Dianthus, Remegen, ImmunAbs, UCB, Amgen, Immunovant, Regeneron, Johnson, and Cartesian. DK: Roche, Novartis Russia, Sanofi, Merck, Janssen (Johnson & Johnson), Novartis, UCB, argenx, Viela Bio (now Horizon), Bristol Mayers Squib, and BIOCAD. SS, BVH, JP, and MH: argenx. KU: UCB, Janssen, Horizon (Viela Bio), Chugai, Hanall BioPharma, Merck, Mitsubishi Tanabe, argenx, Alexion, and the Japan Blood Products Organization. FS: Alexion, Biogen, Mylan, Novartis, Roche, Sanofi, Teva, Almirall, argenx, Avexis, Forward, Lexeo, Merk, Pomona, Takeda, and Prilenia. JLDB: argenx, Alexion, CSL, UCB, Alnylam, Janssen, and Sanofi Genzyme. RM: Alexion, argenx, Ra, BioMarin, Catalyst, UCB, Teva, Merck, Roche, and Biogen. The ADAPT+, ADAPT-SC, and ADAPT-SC+ trials were funded by argenx. Medical writing and editorial support for this presentation was provided by Precision AQ and funded by argenx.

REFERENCES

1. Ulrichts P, et al. J Clin Invest. 2018;128:4372-4386. 2. Ward ES, Ober RJ. Trends Pharmacol Sci. 2018;39:892-904. 3. Vidarsson G, et al. Front Immunol. 2014;5:520. 4. Howard JF Jr, et al. Lancet Neurol. 2021;20:526-536. 5. Guptill JT, et al. Autoimmunity. 2022;55:620-631. 6. Study ARGX-113-2001 (ADAPT-SC) Clinical Trial Protocol v2.0, 02 Jul 2021. 7. Locke KW, et al. Drug Deliv. 2019;26(1):98-106. 8. Casey J, et al. Poster presented at: American Academy of Neurology (AAN) Annual Meeting; April 22-27, 2023; Boston, MA.

Table 2. Summary of TEAEs Overall Population

	Efgartigime (n=179; P)	od PH20 SC YFU=193.4)
	ERª	n (%)
	9.0	152 (84.9)
	0.4	36 (20.1)
	0.3	33 (18.4)
	3.2	82 (45.8)
	<0.1	4 (2.2)
owing to TEAEs ^c	<0.1	4 (2.2)
\Es ^d		
	1.7	52 (29.1)
	0.2	40 (22.3)
	0.6	36 (20.1)
	0.2	28 (15.6)
	0.2	24 (13.4)
	0.2	21 (11.7)
	0.2	19 (10.6)
	0.2	18 (10.1)

 Participants experiencing injection site reaction events decreased over subsequent cycles; from 34.6% (n=62/179) in Cycle 1 to 10.3% (n=7/68) in Cycle 9

• No injection site reactions were grade \geq 3, serious, or resulted in treatment discontinuation

AChR-Ab+ Population change (± MG-ADL ₃ Efgartigi

^aValues for MG-ADL range from 0-24, with higher total scores indicating more impairment. ^bThe mean (SE) change of MG-ADL baseline from Cycle 1 to Cycle 9 was -2.1 (0.42).

Figure 3. Mean Change in MG-QoL15r From Study Baseline^a AChR-Ab+ Population

^aValues for MG-QoL15r range from 0-30, with higher total scores indicating greater severity of symptoms. ^bThe mean (SE) change of MG-QoL15r baseline from Cycle 1 to Cycle 9 was -6.7 (0.97).

SUMMARY

observed compared with ADAPT-SC

none led to treatment discontinuation

Efgartigimod PH20 SC treatment resulted in consistent and repeatable improvements in MG-ADL, MG-QoL15r, and EQ-5D-5L VAS in AChR-Ab+ participants with gMG

to achieve MSE; the proportions of AChR-Ab+ participants achieving CMI or MSE were consistent across multiple cycles

The ADAPT-SC+ study is ongoing

Figure 4. Mean Change in EQ-5D-5L VAS From Study Baseline^a AChR-Ab+ Population

^aValues for EQ-5D-5L VAS range from 0-100, with higher total scores indicating greater overall health. ^bThe mean (SE) change of EQ-5D-5L VAS baseline from Cycle 1 to Cycle 9 was 11.4 (3.23).

Figure 1. Mean Change in MG-ADL From Study Baseline^a

		Cycle	n	Baseline^b Mean (SE)
	-	1	141	7.6 (0.29)
СМІ	-	2	131	6.9 (0.31)
		3	125	6.8 (0.31)
		4	113	6.6 (0.33)
		5	106	6.4 (0.36)
	-	6	100	6.5 (0.37)
	-	7	90	6.1 (0.38)
	-	8	67	5.7 (0.42)
	-	9	52	5.2 (0.52)
7	•			

]	ycle	n	Baseline ⁵ Mean (SE)
	-	1	141	13.1 (0.57)
	-	2	131	11.3 (0.55)
	-	3	125	11.0 (0.59)
I		4	113	11.0 (0.57)
		5	106	10.6 (0.58)
-	-	6	100	10.1 (0.63)
		7	83	10.5 (0.73)
	-	8	64	9.9 (0.78)
	-	9	39	7.9 (0.98)

Efgartigimod PH20 SC was well tolerated over a total of 193.4 PYFU with no new safety signals All injection site reactions were mild or moderate, decreased with subsequent cycles, and The majority of AChR-Ab+ participants experienced a CMI in MG-ADL, and a subset were able

	1	Cycle	n	Baseline^b Mean (SE)
	-	1	141	61.0 (1.57)
	-	2	131	61.1 (1.60)
		3	125	62.0 (1.65)
	-	4	113	62.7 (1.68)
		5	106	62.4 (1.66)
	-	6	97	64.0 (1.92)
	-	7	83	65.4 (2.16)
	-	8	59	64.2 (2.36)
	-	9	33	72.4 (3.08)
7	4			

argenx