

Long-term Safety, Tolerability, and Efficacy of Efgartigimod in Patients With Generalized Myasthenia Gravis: Concluding Analyses From the ADAPT+ Study

<u>Mamatha Pasnoor</u>,¹ Vera Bril,² Chafic Karam,³ Stojan Peric,⁴ Jan L. De Bleecker,⁵ Hiroyuki Murai,⁶ Andreas Meisel,⁷ Said Beydoun,⁸ Tuan Vu,⁹ Peter Ulrichts,¹⁰ Benjamin Van Hoorick,¹⁰ Caroline T'joen,¹⁰ Kimiaki Utsugisawa,¹¹ Jan Verschuuren,¹² Renato Mantegazza,¹³ James F. Howard Jr,¹⁴ in collaboration with the ADAPT Investigator Study Group

¹University of Kansas Medical Center, Kansas City, KS, USA; ²Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, Toronto, ON, Canada; ³Penn Neuroscience Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia; ⁵Ghent University Hospital, Ghent, Belgium; ⁶Department of Neurology, School of Medicine, International University of Health and Welfare, Tokyo, Japan; ⁷Charité – Universitätsmedizin Berlin, Berlin, Germany; ⁸Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; ⁹Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA; ¹⁰argenx, Ghent, Belgium; ¹¹Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan; ¹²Department of Neurology, Leiden University Medical Center, Netherlands; ¹³Department of Neuromuscular Diseases, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy; ¹⁴Department of Neurology, The University of North Carolina, Chapel Hill, NC, USA

Disclosures

- The phase 3 ADAPT and ADAPT+ studies were funded by argenx
- MP has served as a medical advisor/consultant for argenx BV

MP has also served as a consultant or medical advisor to Terumo BCT, Alexion, CSL Behring, Momenta, Catalyst, UCB, Immunovant, and Janssen

Efgartigimod Effectively Blocks FcRn and Reduces IgG Levels

- FcRn recycles IgG, extending its half-life and maintaining serum concentration¹
- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity to FcRn^{2,3}
- Efgartigimod was designed to outcompete endogenous IgG, preventing recycling and promoting IgG lysosomal degradation without directly impacting its production²⁻⁶
 - Targeted reduction of all IgG subtypes
 - No impact on IgM, IgA, IgE, and IgD
 - No reduction in albumin levels
 - No increase in cholesterol

FC, crystallizable fragment; FcRn, neonatal Fc receptor; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M.

1. Sesarman A, et al. Cell Mol Life Sci. 2010;67(15):2533-2550. 2. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372-4386. 3. Vaccaro C, et al. Nat Biotech. 2005;23(10):1283-1288.

4. Howard JF Jr, et al. Lancet Neurol. 2021;20(7):526-536. 5. Nixon AE, et al. Front Immunol. 2015;6:176. 6. Ward ES, et al. Front Immunol. 2022;13:892534.

ADAPT/ADAPT+ Study Design

AChEI, acetylcholinesterase inhibitor; AChR, acetylcholine receptor; gMG, generalized myasthenia gravis; IgG, immunoglobulin G; IV, intravenous; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; NSIST, nonsteroidal immunosuppressive therapy. Note: Patients requiring rescue therapy in ADAPT and ADAPT+ Part A discontinued the study if they required rescue therapy; however, patients in ADAPT+ Part B did not. ^aParticipants who required retreatment but were unable to complete a treatment cycle within the time frame of ADAPT were also eligible to be rolled over to ADAPT+. ^bAChEI, steroid, and/or NSIST; patients could not change concomitant therapies in ADAPT or during dosing in Part A of ADAPT+. Physicians could change concomitant therapies between doses in Part A and at any time in Part B of ADAPT+. ^c<3 cycles dosed at ≥8 weeks after initial cycle. ^dWith >50% from nonocular items.

Howard JF Jr, et al. Lancet Neurol. 2021;20(7):526-536.

ADAPT+ Baseline Characteristics and Treatment Exposure

Safety Population

Baseline Demographics and Disease Characteristics

Characteristics	Efgartigimod (N=145)						
Age, y (SD)	47.0 (14.8)						
Sex, n (%)							
Female	103 (71)						
Male	42 (29)						
Race, (n %)							
Asian	11 (7.6)						
Black/African American	5 (3.4)						
White	126 (86.9)						
Time since gMG diagnosis, y (SD)	9.7 (8.2)						
MGFA class at screening, n (%)							
II	55 (37.9)						
III	86 (59.3)						
IV	4 (2.8)						
AChR-Ab+, n (%)	111 (76.6)						
Total MG-ADL score, mean (SD)	9.8 (3.2)						
Total QMG score, mean (SD)	15.4 (5.7)						
Standard of care, n (%)							
NSIST	89 (61.4)						
No NSIST	56 (38.6)						
Steroid	111 (76.6)						
No steroid	34 (23.4)						

Treatment Exposure Through Conclusion of ADAPT+

	Efgartigimod (N=145)					
Patients receiving ≥1 dose	145					
Study duration, d						
Median (min, max)	651 (50, 1074)					
Mean (SD)	610.2 (247.6)					
Follow-up since first treatment in study, patient-years	229					
Max number of cycles	Up to 19					

AChR-Ab+, acetylcholine receptor antibody seropositive; gMG, generalized myasthenia gravis; IgG, immunoglobulin G; IV, intravenous; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; NSIST, nonsteroidal immunosuppressive therapy; QMG, Quantitative Myasthenia Gravis.

Rates of Adverse Events Were Similar Across ADAPT and ADAPT+

Safaty Population

<i>Sujety Population</i>		ADAPT						ADAPT+ (Up to 3 yrs)			
		Placebo (n=83) [34.5 PY]			Efgartigimod (n=84) [34.9 PY]			Efgartigimod (n=145) [229.0 PY]			
	IR ^a	m	n (%)	IR ^a	m	n (%)		IR ^a	m	n (%)	
AEs ^b	7.8	270	70 (84)	7.2	252	65 (77)		3.5	809	124 (86)	
SAEs	0.3	10	7 (8)	0.1	4	4 (5) ^c		0.2	56	36 (25) ^c	
≥1 infusion-related reaction event	0.3	9	8 (10)	0.1	3	3 (4)		0.1	21	15 (10)	
Infection AEs	1.2	42	31 (37)	1.6	56	39 (46)		0.7	168	80 (55)	
Discontinued due to AEs	0.1	3	3 (4)	0.2	7	3 (4)		0.1	14	12 (8)	
Severe AEs (grade ≥3)	0.4	12	8 (10)	0.3	10	9 (11)		0.3	76	40 (28)	
Death ^d	-	0	0 (0)	-	0	0 (0)		<0.1	5	5 (3)	
Most frequent AEs											
Nasopharyngitis	0.5	17	15 (18)	0.3	12	10 (12)		0.1	24	20 (14)	
Upper respiratory tract infection	0.1	5	4 (5)	0.3	11	9 (11)		<0.1	7	6 (4)	
Urinary tract infection	0.1	4	4 (5)	0.3	9	8 (10)		0.1	19	13 (9)	
Headache	1.1	39	23 (28)	1.1	40	24 (29)		0.4	103	36 (25)	
Nausea	0.4	15	9 (11)	0.2	7	7 (8)		0.1	13	9 (6)	
Diarrhea	0.4	14	9 (11)	0.2	6	6 (7)		0.1	19	14 (10)	
COVID-19 ^e	-	0	0 (0)	-	0	0 (0)		0.1	24	23 (16) ^f	

AE, adverse event; COVID-19, coronavirus disease 2019; IR, incidence rate; m, number of events; PY, patient-year; SAE, serious adverse event; SARS-COV-2, severe acute respiratory syndrome coronavirus 2. ^aIR was calculated as number of events per total PY of follow-up. ^bAEs were predominantly mild or moderate. ^cOnly 1 SAE was considered treatment related per investigator. ^dNone of the deaths in ADAPT+ were related to efgartigimod administration per the principal investigator. eIncludes all preferred terms of COVID-19, COVID-19 pneumonia, Coronavirus infection, exposure to SARS-COV-2 and SARS-COV-2 test positive. fAmong patients reporting COVID-19 during ADAPT+, 83% had not received prior COVID-19 vaccination.

Oral Presentation at AAN 2023, April 22-27, Boston, MED-ALL-EFG-2300021

No Clinically Meaningful Reductions in Albumin and No Increases in LDL With Efgartigimod

AChR-Ab+ Population

AChR-Ab, acetylcholine receptor autoantibody; LDL, low-density lipoprotein; LLN, lower limit of normal; ULN, upper limit of normal. aReference values are based on Kratz A, et al. N Engl. 2004;351(15):1548-1563.

Oral Presentation at AAN 2023, April 22-27, Boston, MED-ALL-EFG-2300021

Efgartigimod Demonstrated Consistent and Repeatable Improvement in Both MG-ADL and QMG Over Multiple Cycles in ADAPT+

AChR-Ab+ Population

MG-ADL Total Score Mean Change From Cycle Baseline by Cycle^a (Efgartigimod + current TX)

QMG Total Score Mean Change From Cycle Baseline by Cycle (Efgartigimod + current TX)

AChR-Ab, acetylcholine receptor autoantibody; CMI, clinically meaningful improvement; MG-ADL, Myasthenia Gravis Activities of Daily Living; QMG, Quantitative Myasthenia Gravis; TX, treatment. ^aOnly cycles with data out to week 11 are depicted. ^bQMG was not a required assessment in part B of ADAPT+; therefore, there are fewer data for cycles compared to MG-ADL.

Efgartigimod Demonstrates Clinically Meaningful Improvements Across Increasing MG-ADL and QMG Thresholds Over Multiple Cycles in ADAPT+

AChR-Ab+ Population

AChR-Ab, acetylcholine receptor autoantibody; CMI, clinically meaningful improvement; MG-ADL, Myasthenia Gravis Activities of Daily Living; QMG, Quantitative Myasthenia Gravis.

^aOnly cycles with data out to week 11 are included. ^bQMG was not a required assessment in part B of ADAPT+; therefore, there are fewer data for cycles compared to MG-ADL.

9

Efgartigimod Demonstrated Consistent Transient Reduction in IgG Levels Over Multiple Cycles in ADAPT+

AChR-Ab+ Population

AChR-Ab, acetylcholine receptor autoantibody; IgG, immunoglobulin G.

^aSamples for pharmacodynamic biomarkers, including total IgG levels, were collected only during part A (year 1) of ADAPT+.

Distribution of Time Between Cycles Supports an Individualized Treatment Approach

AChR-Ab+ Population With >350 Days of Follow-Up in ADAPT/ADAPT+ (N=95)

ADAPT+ demonstrates that individualization of cycle dosing allows for flexible or fixed time between cycles^a; and initiation of subsequent cycles is based on clinical evaluation and patient/HCP goals

AChR-Ab, acetylcholine receptor autoantibody.

*Time Between Cycles is defined as the time from the last infusion of the previous treatment cycle to the first infusion of the subsequent treatment cycle.

^aMedian number of cycles per year was 5.1 (min-max, 0.5-7.5; mean ± SD, 4.8 ± 1.9 cycles).

11

Summary

In AChR-Ab+ patients, efgartigimod treatment resulted in consistent and repeatable improvements in MG-ADL and QMG scores, and similar results were seen in the overall population

Incidence of AEs were similar across ADAPT and ADAPT+ (84% [placebo arm] and 77% [efgartigimod arm] of patients in ADAPT vs 86% of patients in ADAPT+)

Efgartigimod treatment led to no reductions in albumin and no increases in LDL cholesterol

AChR-Ab+ patients with ≥350 days of follow-up across ADAPT/ADAPT+ showed varying time between cycles, supporting an individualized treatment approach

This analysis suggests that long-term efgartigimod treatment is well tolerated and efficacious in patients with gMG

AChR-Ab, acetylcholine receptor autoantibody; gMG, generalized myasthenia gravis; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MG-ADL, Myasthenia Gravis Activities of Daily Living; QMG, Quantitative Myasthenia Gravis. Oral Presentation at AAN 2023, April 22-27, Boston, MED-ALL-EFG-2300021