

Long-Term Safety, Tolerability, and Efficacy of Efgartigimod in Patients With Generalized Myasthenia Gravis: Interim Results of the ADAPT+ Study

James F. Howard Jr, Vera Bril, 7 Tuan Vu, 4 Chafic Karam, Stojan Peric, Ian L. De Bleecker, Hiroyuki Murai, Andreas Meisel, Said Beydoun, 10 Mamatha Pasnoor, Andreas Meisel, Said Beydoun, Investigator Study Group ¹Department of Neurology, The University of North Carolina, Chapel Hill, North Carolina, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neurology, University of South Florida, USA; Pe Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ⁶Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Serbia; Pennsylvania, USA; 6Neurology Clinic, Clinical Center, Charité— Charit Universitätsmedizin Berlin, Germany; 10 Keck School of Medicine, University of Southern California, Los Angeles, California, USA; 12 argenx, Ghent, Belgium; 13 Department of Neurology, Hanamaki, Japan; 14 Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto

INTRODUCTION

Efgartigimod Mechanism of Action: Blocking FcRn

Neurologico Carlo Besta, Milan, Italy

- FcRn recycles IgG, extending its half-life and maintaining its serum
- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity to FcRn^{2,3}
- Efgartigimod was designed to outcompete endogenous IgG, preventing recycling and promoting lysosomal degradation of IgG²⁻⁶
- Targeted reduction of all IgG subclasses
- No impact on immunoglobulins M or A
- No reduction in albumin levels
- No increase in cholesterol

 No impact on IgG production or ability to mount an immune response

METHODS

ADAPT was a 26-week, global, multicenter, randomized, double-blind, placebo-controlled, phase 3 trial evaluating efgartigimod in patients with gMG. Participants who completed ADAPT were eligible to be rolled over to ADAPT+4,a

not change concomitant therapies in ADAPT or during dosing in Part A of ADAPT+. Physicians could change concomitant therapies between doses in Part A and at any time in Part B of ADAPT+. e≤3 cycles dosed at ≥8 weeks after initial cycle. With >50% from nonocular items.

SUMMARY

IRs of AEs were similar across ADAPT and ADAPT+ (84% [placebo arm] and 77% [efgartigimod arm] of patients in ADAPT vs 85% of patients in ADAPT+)

AChR-Ab+ patients with ≥1 year of follow-up across ADAPT/ADAPT+ (n=95) received a median (range) 5.0 (0.4-7.6) cycles/y

In AChR-Ab seropositive patients, efgartigimod treatment resulted in repeatable and consistent decreases in MG-ADL and QMG scores, as well as IgG and anti-AChR-Ab levels, over multiple cycles in ADAPT+

This analysis suggests that long-term efgartigimod treatment is well tolerated and efficacious in patients with gMG

The ADAPT+ study is currently ongoing

RESULTS

- 145 patients have received ≥1 cycle (or part of a cycle) of open-label efgartigimod as of January 31, 2022
- AChR-Ab+ patients with ≥1 year of follow-up across ADAPT/ADAPT+ (n=95) received a median (range) of 5.0 (0.4–7.6) cycles/year

Table 1. Summary of AEs (Safety Population)

	ADAPT						ADAPT+		
	Placebo (n=83) [34.51 PY]			Efgartigimod (n=84) [34.86 PY]			Efgartigimod (n=145) [217.55 PY]		
	IRa	m	n (%)	IR ^a	m	n (%)	IR ^a	m	n (%)
AEsb	7.8	270	70 (84)	7.2	252	65 (77)	3.6	783	123 (85)
SAEs	0.3	10	7 (8)	0.1	4	4 (5) ^c	0.2	52	34 (23)°
≥1 Infusion-related reaction event	0.3	9	8 (10)	0.1	3	3 (4)	0.1	21	15 (10)
Infection AEs	1.2	42	31 (37)	1.6	56	39 (46)	0.8	164	80 (55)
Discontinued due to AEs	0.1	3	3 (4)	0.2	7	3 (4)	0.1	14	12 (8)
Severe AEs (grade ≥3)	0.4	12	8 (10)	0.3	10	9 (11)	0.3	72	38 (26)
Death ^d	-	0	0 (0)	-	0	0 (0)	<0.1	5	5 (3)
Most frequent AEs									
Nasopharyngitis	0.5	17	15 (18)	0.3	12	10 (12)	0.1	24	20 (14)
Upper respiratory tract infection	0.2	5	4 (5)	0.3	11	9 (11)	<0.1	7	6 (4)
Urinary tract infection	0.1	4	4 (5)	0.3	9	8 (10)	0.1	18	13 (9)
Headache	1.1	39	23 (28)	1.2	40	24 (29)	0.5	98	36 (25)
Nausea	0.4	15	9 (11)	0.2	7	7 (8)	0.1	13	9 (6)
Diarrhea	0.4	14	9 (11)	0.2	6	6 (7)	0.1	19	14 (10)
COVID-19 ^e	-	0	0 (0)	-	0	0 (0)	0.1	23	22 (15)

^aIR was calculated as number of events per total PYs of follow-up. ^bAEs were predominantly mild or moderate. ^cOnly 1 SAE was considered treatment related per investigator. dNone of the deaths in ADAPT+ were related to efgartigimod administration per the principal investigator. eIncludes all preferred terms of COVID-19, COVID-19 pneumonia, Coronavirus infection, and SARS-COV-2 test

Figure 1. Proportion of Patients With Increasing MG-ADL Thresholds, per Cycle AChR-Ab+ Patients

Efgartigimod (ADAPT+) Placebo (ADAPT)

100% 75% 50% 25% 0% 25% 50% 75% 100% **Efgartigimod** Placebo Median % (ADAPT+) —— Range (ADAPT+)

Figure 2. Proportion of Patients With Increasing QMG Thresholds, per Cycle AChR-Ab+ Patients

Efgartigimod (ADAPT+) Placebo (ADAPT)

Efgartigimod Placebo Median % (ADAPT+) —— Range (ADAPT+) —— % (ADAPT cycle 1) ^aQMG was not a required assessment in part B of ADAPT+; therefore, there are fewer data for cycles compared to MG-ADL.

Figure 3. Mean Change in MG-ADL Total Score From Cycle Baseline AChR-Ab+ Patients

Figure 4. Mean Change in QMG Total Score From Cycle Baseline AChR-Ab+ Patients

Figure 5. Mean % Change in IgG and Anti-AChR-Ab Levels From Cycle Baseline AChR-Ab+ Patients

AChR-Ab, acetylcholine receptor antibody; AE, adverse event; COVID-19, coronavirus disease 2019; FcRn, neonatal Fc receptor; gMG, generalized myasthenia Gravis Foundation of America; PY, patient-year; SAE, serious adverse event; SE, standard error; and the contract of the companient of the companien QMG, Quantitative Myasthenia Gravis.

1. Sesarman A, et al. Cell Mol Life Sci. 2010;67(15):2533-2550. 2. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372-4386. 3. Vaccaro C, et al. J Neurol Sci. 2021;430:118074.

atefully acknowledge the ADAPT and ADAPT+ trial participants and investigators. JFH: Alexion, argenx, Cartesian Therapeutics, the CDC, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH, Patient-Centered Outcomes Research Institute, UCB, Takeda, Immunovant, Regeneron, Sanofi, Horizon, and Octapharma; TV: Alexion, argenx, Cartesian Therapeutics, the CDC, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH, Patient-Centered Outcomes Research Institute, UCB, Takeda, Immunovant, Regeneron, Sanofi, Horizon, and Octapharma; TV: Alexion, and Octapharma; TV: Alexion, argenx, Cartesian Therapeutics, the CDC, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH, Patient-Centered Outcomes Research Institute, UCB, Takeda, Immunovant, Regeneron, Sanofi, Horizon, and Octapharma; TV: Alexion, and Octapharma; TV: Al argenx, NIH, UCB, Horizon, Regeneron, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; HM: Alexion, CSL, UCB, Alnylam, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Products Organization and Chugai and the Ministry of Health, Labour and Welfare of Japan; AM: Alexion, argenx, Witaccess, Octapharma, Octapharma and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, Amylyx, Am BCT; AG and CT: employees of argenx, We and Biogen. The ADAPT and

