Long-Term Safety, Tolerability, and Efficacy of Efgartigimod in Patients With Generalized Myasthenia Gravis: Interim Results of the ADAPT+ Study James F. Howard Jr, Vera Bril, 7 Tuan Vu, 4 Chafic Karam, Stojan Peric, Ian L. De Bleecker, Hiroyuki Murai, Andreas Meisel, Said Beydoun, 10 Mamatha Pasnoor, Andreas Meisel, Said Beydoun, Investigator Study Group ¹Department of Neurology, The University of North Carolina, Chapel Hill, North Carolina, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Neuroscience of Neurology, University of South Florida, USA; Penn Pe Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ⁶Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Serbia; Pennsylvania, USA; 6Neurology Clinic, Clinical Center, Charité— Charit Universitätsmedizin Berlin, Germany; 10 Keck School of Medicine, University of Southern California, Los Angeles, California, USA; 12 argenx, Ghent, Belgium; 13 Department of Neurology, Hanamaki, Japan; 14 Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto ### INTRODUCTION ### **Efgartigimod Mechanism of Action: Blocking FcRn** Neurologico Carlo Besta, Milan, Italy - FcRn recycles IgG, extending its half-life and maintaining its serum - Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity to FcRn^{2,3} - Efgartigimod was designed to outcompete endogenous IgG, preventing recycling and promoting lysosomal degradation of IgG²⁻⁶ - Targeted reduction of all IgG subclasses - No impact on immunoglobulins M or A - No reduction in albumin levels - No increase in cholesterol No impact on IgG production or ability to mount an immune response ### **METHODS** ADAPT was a 26-week, global, multicenter, randomized, double-blind, placebo-controlled, phase 3 trial evaluating efgartigimod in patients with gMG. Participants who completed ADAPT were eligible to be rolled over to ADAPT+4,a not change concomitant therapies in ADAPT or during dosing in Part A of ADAPT+. Physicians could change concomitant therapies between doses in Part A and at any time in Part B of ADAPT+. e≤3 cycles dosed at ≥8 weeks after initial cycle. With >50% from nonocular items. ### **SUMMARY** IRs of AEs were similar across ADAPT and ADAPT+ (84% [placebo arm] and 77% [efgartigimod arm] of patients in ADAPT vs 85% of patients in ADAPT+) AChR-Ab+ patients with ≥1 year of follow-up across ADAPT/ADAPT+ (n=95) received a median (range) 5.0 (0.4-7.6) cycles/y In AChR-Ab seropositive patients, efgartigimod treatment resulted in repeatable and consistent decreases in MG-ADL and QMG scores, as well as IgG and anti-AChR-Ab levels, over multiple cycles in ADAPT+ This analysis suggests that long-term efgartigimod treatment is well tolerated and efficacious in patients with gMG The ADAPT+ study is currently ongoing ### **RESULTS** - 145 patients have received ≥1 cycle (or part of a cycle) of open-label efgartigimod as of January 31, 2022 - AChR-Ab+ patients with ≥1 year of follow-up across ADAPT/ADAPT+ (n=95) received a median (range) of 5.0 (0.4–7.6) cycles/year ### Table 1. Summary of AEs (Safety Population) | | ADAPT | | | | | | ADAPT+ | | | |------------------------------------|---------------------------------|-----|---------|--------------------------------------|-----|--------------------|--|-----|----------| | | Placebo
(n=83)
[34.51 PY] | | | Efgartigimod
(n=84)
[34.86 PY] | | | Efgartigimod
(n=145)
[217.55 PY] | | | | | IRa | m | n (%) | IR ^a | m | n (%) | IR ^a | m | n (%) | | AEsb | 7.8 | 270 | 70 (84) | 7.2 | 252 | 65 (77) | 3.6 | 783 | 123 (85) | | SAEs | 0.3 | 10 | 7 (8) | 0.1 | 4 | 4 (5) ^c | 0.2 | 52 | 34 (23)° | | ≥1 Infusion-related reaction event | 0.3 | 9 | 8 (10) | 0.1 | 3 | 3 (4) | 0.1 | 21 | 15 (10) | | Infection AEs | 1.2 | 42 | 31 (37) | 1.6 | 56 | 39 (46) | 0.8 | 164 | 80 (55) | | Discontinued due to AEs | 0.1 | 3 | 3 (4) | 0.2 | 7 | 3 (4) | 0.1 | 14 | 12 (8) | | Severe AEs (grade ≥3) | 0.4 | 12 | 8 (10) | 0.3 | 10 | 9 (11) | 0.3 | 72 | 38 (26) | | Death ^d | - | 0 | 0 (0) | - | 0 | 0 (0) | <0.1 | 5 | 5 (3) | | Most frequent AEs | | | | | | | | | | | Nasopharyngitis | 0.5 | 17 | 15 (18) | 0.3 | 12 | 10 (12) | 0.1 | 24 | 20 (14) | | Upper respiratory tract infection | 0.2 | 5 | 4 (5) | 0.3 | 11 | 9 (11) | <0.1 | 7 | 6 (4) | | Urinary tract infection | 0.1 | 4 | 4 (5) | 0.3 | 9 | 8 (10) | 0.1 | 18 | 13 (9) | | Headache | 1.1 | 39 | 23 (28) | 1.2 | 40 | 24 (29) | 0.5 | 98 | 36 (25) | | Nausea | 0.4 | 15 | 9 (11) | 0.2 | 7 | 7 (8) | 0.1 | 13 | 9 (6) | | Diarrhea | 0.4 | 14 | 9 (11) | 0.2 | 6 | 6 (7) | 0.1 | 19 | 14 (10) | | COVID-19 ^e | - | 0 | 0 (0) | - | 0 | 0 (0) | 0.1 | 23 | 22 (15) | ^aIR was calculated as number of events per total PYs of follow-up. ^bAEs were predominantly mild or moderate. ^cOnly 1 SAE was considered treatment related per investigator. dNone of the deaths in ADAPT+ were related to efgartigimod administration per the principal investigator. eIncludes all preferred terms of COVID-19, COVID-19 pneumonia, Coronavirus infection, and SARS-COV-2 test ### Figure 1. Proportion of Patients With Increasing MG-ADL Thresholds, per Cycle AChR-Ab+ Patients Efgartigimod (ADAPT+) Placebo (ADAPT) 100% 75% 50% 25% 0% 25% 50% 75% 100% **Efgartigimod** Placebo Median % (ADAPT+) —— Range (ADAPT+) ### Figure 2. Proportion of Patients With Increasing QMG Thresholds, per Cycle AChR-Ab+ Patients ## Efgartigimod (ADAPT+) Placebo (ADAPT) **Efgartigimod** Placebo Median % (ADAPT+) —— Range (ADAPT+) —— % (ADAPT cycle 1) ^aQMG was not a required assessment in part B of ADAPT+; therefore, there are fewer data for cycles compared to MG-ADL. ### Figure 3. Mean Change in MG-ADL Total Score From Cycle Baseline AChR-Ab+ Patients ### Figure 4. Mean Change in QMG Total Score From Cycle Baseline AChR-Ab+ Patients ### Figure 5. Mean % Change in IgG and Anti-AChR-Ab Levels From Cycle Baseline AChR-Ab+ Patients AChR-Ab, acetylcholine receptor antibody; AE, adverse event; COVID-19, coronavirus disease 2019; FcRn, neonatal Fc receptor; gMG, generalized myasthenia Gravis Foundation of America; PY, patient-year; SAE, serious adverse event; SE, standard error; and the contract of the companient companien QMG, Quantitative Myasthenia Gravis. 1. Sesarman A, et al. Cell Mol Life Sci. 2010;67(15):2533-2550. 2. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372-4386. 3. Vaccaro C, et al. J Neurol Sci. 2021;430:118074. atefully acknowledge the ADAPT and ADAPT+ trial participants and investigators. JFH: Alexion, argenx, Cartesian Therapeutics, the CDC, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH, Patient-Centered Outcomes Research Institute, UCB, Takeda, Immunovant, Regeneron, Sanofi, Horizon, and Octapharma; TV: Alexion, argenx, Cartesian Therapeutics, the CDC, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH, Patient-Centered Outcomes Research Institute, UCB, Takeda, Immunovant, Regeneron, Sanofi, Horizon, and Octapharma; TV: Alexion, and Octapharma; TV: Alexion, argenx, Cartesian Therapeutics, the CDC, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH, Patient-Centered Outcomes Research Institute, UCB, Takeda, Immunovant, Regeneron, Sanofi, Horizon, and Octapharma; TV: Alexion, Al argenx, NIH, UCB, Horizon, Regeneron, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; HM: Alexion, CSL, UCB, Alnylam, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Sanofi Genzyme; SP: Pfizer, Products Organization and Chugai and the Ministry of Health, Labour and Welfare of Japan; AM: Alexion, argenx, Witaccess, Octapharma, Octapharma and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Society; SB: AB Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, and Terumo and German Myasthenia Gravis Science, Alexion, Amylyx, argenx, Zwijnaarde, Catalyst, Amylyx, Am BCT; AG and CT: employees of argenx, We and Biogen. The ADAPT