

Efficacy, Safety, and Tolerability of Efgartigimod in Anti-Acetylcholine Receptor Autoantibody Seronegative Patients With Generalized **Myasthenia Gravis: Interim Analysis of ADAPT+ Studies**

Tuan Vu,¹ Vera Bril,^{2,3} Chafic Karam,⁴ Stojan Peric,⁵ Jan L. De Bleecker,⁶ Hiroyuki Murai,⁷ Mamatha Pasnoor,⁸ Francesco Sacca,⁹ Andreas Meisel,¹⁰ Antonio Guglietta,¹¹ Caroline T'joen,¹¹ Kimiaki Utsugisawa,¹² Renato Mantegazza,¹³ James F. Howard Jr,¹⁴ in collaboration with the ADAPT Investigator Study Group ¹Department of Neurology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA; ²Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University of Toronto, Ontario, Canada; ⁴Penn Neuroscience Center - Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Toronto, Ontario, Canada; ⁴Penn Neuroscience Center - Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; ¹Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelp Serbia; Belgrade, Serbia; Belgr Federico II University of Naples, Italy; ¹⁰Department of Neurology and Neurology and Neurology, Hanamaki, Japan; ¹³Department of Neurology, Hanamaki, Japan; ¹³Department of Neurology, Hanamaki, Japan; ¹⁴Department of Neurology, Hanamaki, Japan; Milan, Italy; ¹⁴Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

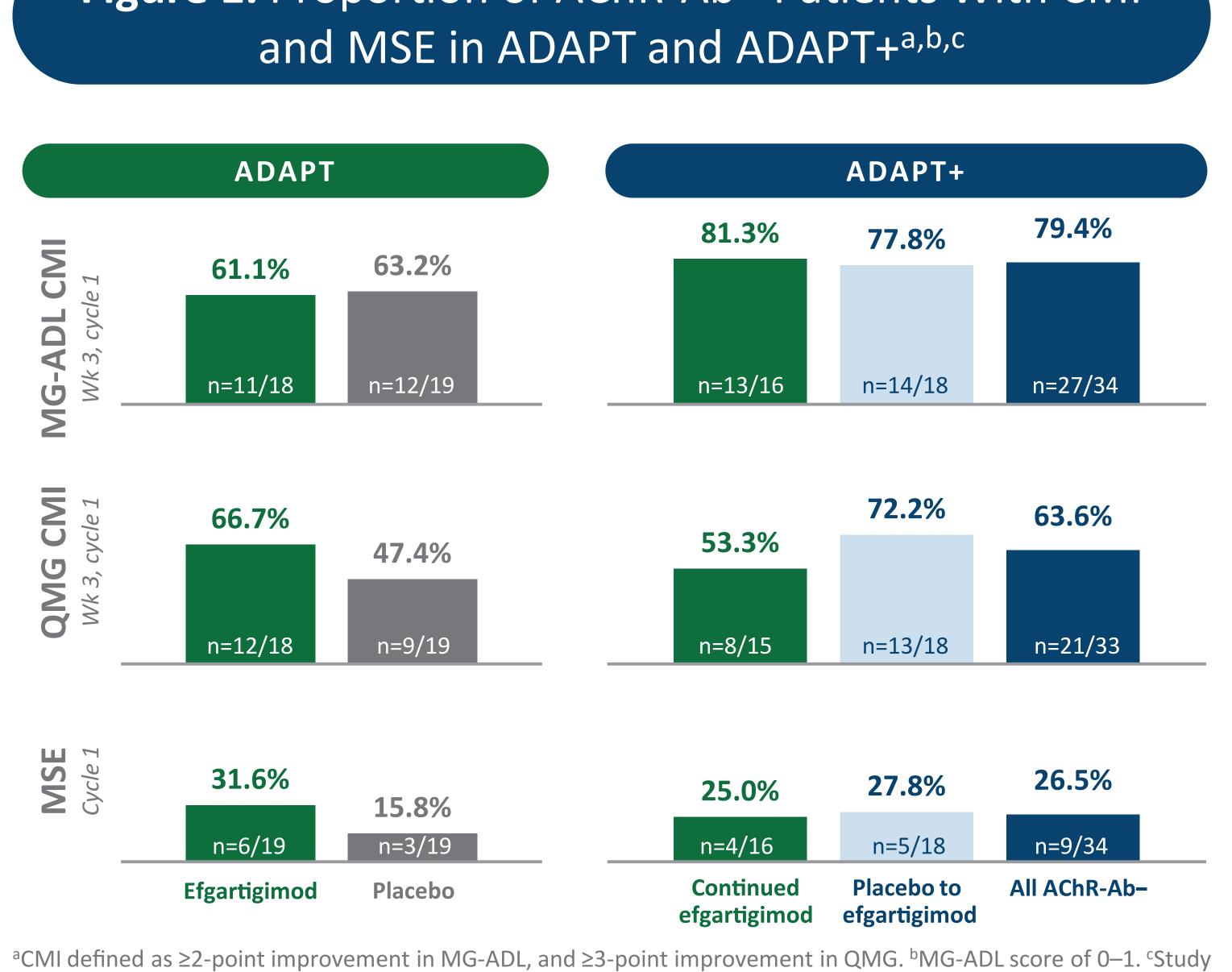
INTRODUCTION

Efgartigimod Mechanism of Action: Blocking Neonatal Fc Receptor

- FcRn recycles IgG, extending its half-life and maintaining its serum concentration
- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity to FcRn^{2,3}
- Efgartigimod was designed to outcompete endogenous IgG, preventing recycling and promoting lysosomal degradation of IgG²⁻⁵
- Targeted reduction of all IgG subclasses
- No impact on immunoglobulins M or A
- No change in albumin or cholesterol
- No impact on IgG production or ability to mount an immune response

Clinical Challenges in the Management of AChR-Ab-gMG

- Pathogenic IgG autoantibodies are detectable in most patients with gMG, typically targeting the AChR on skeletal muscle⁶
- 15%–20% of patients with gMG are AChR-Ab–, including ~6% with MuSK antibodies and ~2% with anti-LRP4 antibodies⁷
- Autoantibodies are detectable using highly sensitive cell-based assays in ~30% of patients without detectable autoantibodies by conventional assays⁸
- AChR-Ab-gMG affects a heterogenous and potentially difficult-to-diagnose patient population with high unmet clinical need who have historically been excluded from clinical trials⁷


RESULTS

Trial Participants

Table 1. Baseline Characteristics

Figure 1. Proportion of AChR-Ab– Patients With CMI

	AChR-Ab- Patients				
Characteristic	Efgartigimod (n=19)	Placebo (n=19)			
Age, mean (SD), y	50.2 (11.6)	44.8 (12.6)			
Sex, female, n (%)	17 (89.5)	15 (78.9)			
MuSK-Ab+, n (%)	3 (15.8)	3 (15.8)			
Time since diagnosis, mean (SD), y	11.7 (11.5)	8.5 (5.2)			
Mean (SD) MG-ADL score	9.7 (3.1)	9.8 (2.5)			
Mean (SD) QMG score	16.6 (4.6)	16.5 (5.2)			
MGFA class at screening, n (%) Class II Class III Class IV	6 (31.6) 12 (63.2) 1 (5.3)	6 (31.5) 13 (68.4) 0			
Prior therapy with NSIST, n (%)	15 (78.9)	14 (73.7)			
Baseline gMG therapies, n (%) Any NSIST ^a Steroids AChE Inhibitor	11 (57.9) 14 (73.7) 14 (73.7)	14 (73.7) 16 (84.2) 10 (52.6)			

^aNSIST: azathioprine, cyclosporine, cyclophosphamide, methotrexate, mycophenolate, and/or tacrolimus.

ABBREVIATIONS

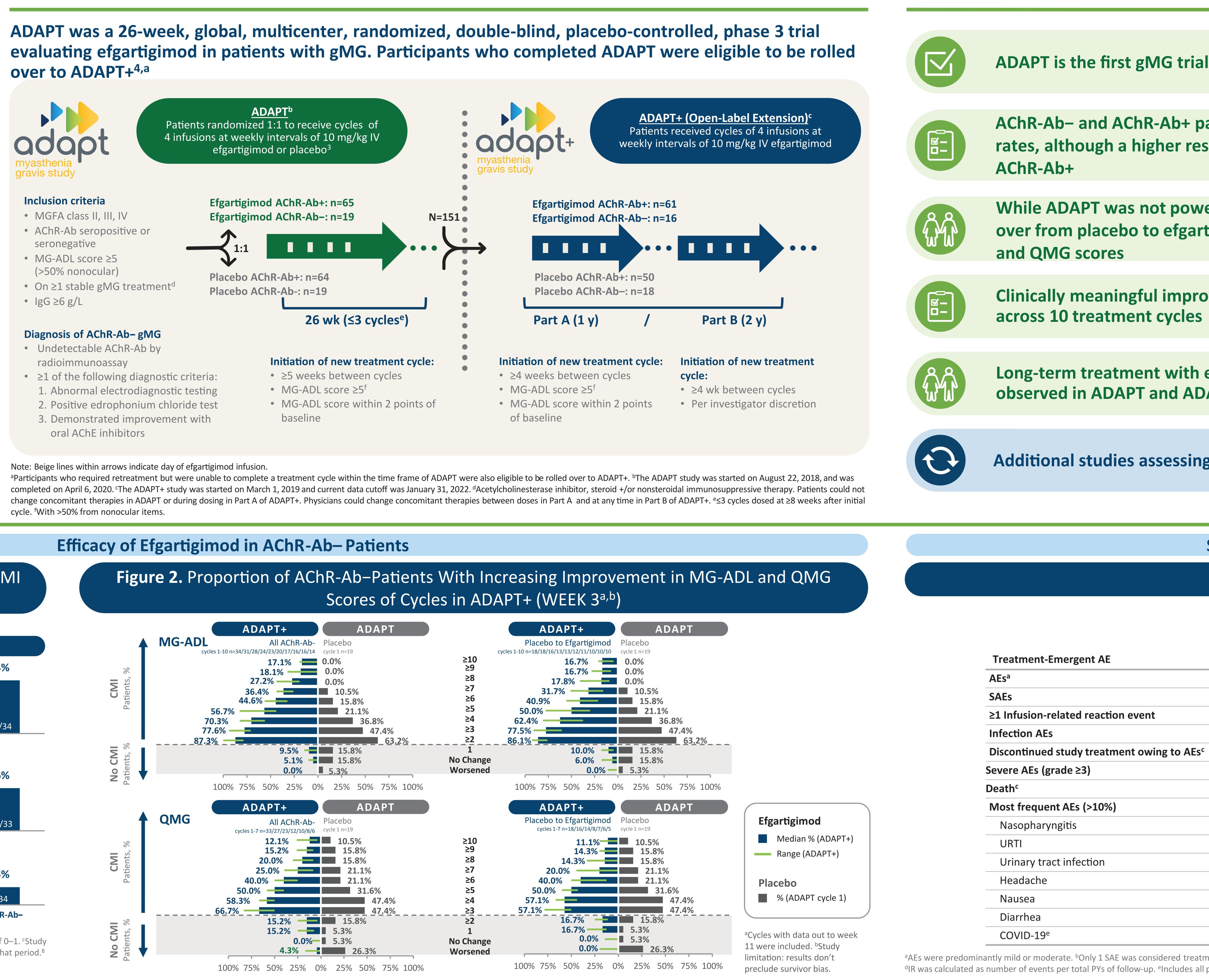
 a cetylcholinesterase; NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases; NIH, National Institute of Neurological and Skin Diseases; NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases; NIH, National Institute of Neurological and Skin Diseases; NIH, National Institute of Neurological and Skin Diseases; NIH, National Institutes of Health; NINDS, National Institute of Neurological and Skin Diseases; NIH, National Institute of Neurological and Skin Disease; NIH, National Institute of Disorders and Stroke; NSIST, nonsteroidal immunosuppressive therapy; POCRI, Patient-Centered Outcomes Research Institute; PY, patient year; QMG, Quantitative Myasthenia Gravis; SAE, serious adverse event; URTI, upper respiratory tract infection; UTI, urinary tract infection. REFERENCES

 I_{1} Sesarman A, et al. *Lancet Neurol.* 2015;6:176. **6.** Behin A, Le Panse R. J Neurol. 2015;14(10):1283-1288. **4.** Howard JF Jr, et al. *Lancet Neurol.* 2015;6:176. **6.** Behin A, Le Panse R. J Neurol. 2015;14(10):1283-1288. **4.** Howard JF Jr, et al. J Neurol. 2015;14(10):1023-1036. **1.** Neurol. 2015;14(10):1023-1036. **7.** Gilhus NE, Verschuuren JJ. Lancet Neurol. 2015;14(10):1023-1036. **1.** Neurol. 2015;14(10):10 ACKNOWLEDGMENTS AND DISCLOSURES: T
Shire, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma; CK: Neurology, Acceleron, Akcea, Alnylam, argenx, Biogen, CSL Behring, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, argenx, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, argenx, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, argenx, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, ADOC, Salveo, Kedrion, Octapharma; CK: Neurology, Acceleron, Akcea, Alnylam, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma; CK: Neurology, Acceleron, Akcea, Alnylam, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, argenx, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag Pharma, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, and Sanofi Genzyme; SP: Pfizer, Teva Actavis, Berlin-Chemie Menar
Seicher, Sei Roche, and Biogen; JFH: Alexion, Argenx, Cartesian, Centers for Disease Control and Prevention, Myasthenia Gravis Foundation of America, Muscular Dystrophy Association, NIH (including NINDS and NIAMS), POCRI, UCB, Takeda, Immunovant, Regeneron, Sanofi US, Horizon, and Toleranzia AB. Medical writing and editorial support for this presentation was provided by PRECISION Value & Health and funded by argenx.

METHODS

over to ADAPT+^{4,a} <u>ADAPT</u>^b Patients randomized 1:1 to receive cycles of 4 infusions at weekly intervals of 10 mg/kg IV adapt efgartigimod or placebo³ Inclusion criteria Efgartigimod AChR-Ab+: n=65 • MGFA class II, III, IV Efgartigimod AChR-Ab-: n=19 AChR-Ab seropositive or seronegative • MG-ADL score ≥5 (>50% nonocular) Placebo AChR-Ab+: n=64 • On ≥1 stable gMG treatme Placebo AChR-Ab-: n=19 • lgG ≥6 g/L Diagnosis of AChR-Ab-gMG Undetectable AChR-Ab by

- radioimmunoassay
- ≥1 of the following diagnostic criteria:
- 1. Abnormal electrodiagnostic testing
- 2. Positive edrophonium chloride test
- 3. Demonstrated improvement with
- oral AChE inhibitors


- baseline

Note: Beige lines within arrows indicate day of efgartigimod infusion.

cycle. ^fWith >50% from nonocular items.

limitation: assessments in ADAPT+ were not captured at weeks 4–6; MSE would not be captured during that period.⁸

Efficacy of Efgartigimod in AChR-Ab– Patients

^aAEs were predominantly mild or moderate. ^bOnly 1 SAE was considered treatment related per investigator. ^cNone of the deaths in ADAPT+ were deemed related to efgartigimod administration per the principal investigator. ^dIR was calculated as number of events per total PYs of follow-up. ^eIncludes all preferred terms of COVID-19, COVID-19 pneumonia, Coronavirus infection, SARS-COV-2 test positive.

ADAPT is the first gMG trial to include AChR-Ab- patients

SUMMARY

AChR-Ab- and AChR-Ab+ patients treated with efgartigimod experienced similar response rates, although a higher response to placebo was observed in AChR-Ab- patients compared to

While ADAPT was not powered to demonstrate statistical significance, patients who crossed over from placebo to efgartigimod during ADAPT+ demonstrated improvement in MG-ADL

Clinically meaningful improvement in MG-ADL scores were observed in ADAPT+ patients

Long-term treatment with efgartigimod was well tolerated, with similar rates of AEs observed in ADAPT and ADAPT+ and no notable differences seen in AChR-Ab- patients

Additional studies assessing the efficacy of efgartigimod in AChR-Ab- patients are warranted

Sa	fety in Ov	erall Trial	Populatio	n			
	Table 2	2. AEs Sum	mary				
		ADAPT				ADAPT+	
	Placebo (N=83) [34.51 PY]		Efgartigimod (N=84) [34.86 PY]		Efgartigimod (N=145) [217.55 PY]		
	IR ^d	n (%)	IR ^d	n (%)	IR ^d	n (%)	
	7.8	70 (84)	7.2	65 (77)	3.6	123 (85)	
	0.3	7 (8)	0.1	4 (5) ^b	0.2	34 (23) ^b	
event	0.3	8 (10)	0.1	3 (4)	0.1	15 (10)	
	1.2	31 (37)	1.6	39 (46)	0.8	80 (55)	
nt owing to AEs ^c	0.1	3 (4)	0.2	3 (4)	0.1	12 (8)	
	0.4	8 (10)	0.3	9 (11)	0.3	38 (26)	
	-	0 (0)	-	0 (0)	<0.1	5 (3)	
	0.5	15 (18)	0.3	10 (12)	0.1	20 (14)	
	0.2	4 (5)	0.3	9 (11)	<0.1	6 (4)	
	0.1	4 (5)	0.3	8 (10)	0.1	13 (9)	
	1.1	23 (28)	1.2	24 (29)	0.5	36 (25)	
	0.4	9 (11)	0.2	7 (8)	0.1	9 (6)	
	0.4	9 (11)	0.2	6 (7)	0.1	14 (10)	
	-	0 (0)	-	0 (0)	0.1	22 (15)	

