

Sophie Steeland,¹ Francesco Saccà,² James F. Howard Jr,³ John W. Sleasman,⁴ Fien Gistelinck,¹ Paul Duncombe,¹ Benjamin Van Hoorick,¹ Renato Mantegazza,⁵ Jan L. De Bleecker,⁶ Antoine Azar,⁷ Kevin Winthrop⁸ ¹argenx, Ghent, Belgium; ²GENESIS Department, Federico II University of Naples, Italy; ³Department of Neuroimmunology, and Pulmonary Medicine, Durham, North Carolina, USA; ⁵Department of Neuroimmunology, and Neuromuscula, USA; ⁴Duke University of North Carolina, USA; ⁴Duke University of North Carolina, USA; ⁵Department of Neuroimmunology, and Neuromuscula, USA; ⁴Duke University of North Carolina, USA; ⁴Duke University of North Carolina, USA; ⁵Department of Neuroimmunology, and Neuromuscula, USA; ⁵Department of Neuroimmunology, and Neuromuscula, USA; ⁵Department of Neuroimmunology, and Neuromuscula, USA; ⁶Department of Neuroimmunology, and Neuromuscula, USA; ⁶Department, North Carolina, USA; ⁶Department, North C Diseases, Fondazione IRCCS Istituto Neurology, Ghent University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, USA; 80regon Health and Science University, Division of Infectious Disease, Portland, Oregon, USA

INTRODUCTION

Efgartigimod Mechanism of Action: Blocking FcRn

- FcRn recycles IgG to extend its half-life and maintain its high serum concentration
- FcRn is additionally involved in other cellular processes such as albumin recycling, as well as IgG-dependent phagocytosis and antigen presentation²
- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered to have increased affinity for FcRn and outcompete endogenous IgG^{3,4}
- Efgartigimod binding to FcRn prevents IgG recycling and promotes its lysosomal degradation, reducing IgG levels without impacting IgG production³⁻⁶
- Targeted reduction of all IgG subtypes^{3,5}
- No impact on levels of IgM, IgA, IgE, or $IgD^{3,6}$
- No reduction in albumin or increase in cholesterol levels⁵⁻⁷
- Efgartigimod PH20 SC is a coformulation of efgartigimod and recombinant human hyaluronidase PH20 (rHuPH20), which allows for rapid SC administration of larger volumes^{8,9}
 - PK/PD modeling and phase 3 data (ADAPT-SC) suggest 4 once-weekly administrations of 1000 mg efgartigimod PH20 SC and 10 mg/kg efgartigimod IV result in comparable decreases in IgG levels^{8,10}

Some immunosuppressive therapies used in the treatment of gMG may increase susceptibility to infections and impair immune response to vaccines¹¹

Glucocorticoids, mycophenolate mofetil, and B-cell-depleting therapies can substantially reduce immunogenicity of mRNA vaccines to SARS-CoV-2^{12,13}

RESULTS

Characteristic

Table 1. Baseline Demographics of Participants in ADAPT+/ADAPT-SC+ Receiving COVID-19 Vaccines^a

Table 2. COVID-19 Vaccine Received by Participants in ADAPT+/ADAPT-SC+a **Participants** (N=68) 1 (1.5)

COVID-19	Vaccine, r	n (%)
	racomo, i	• (/ • /

	(
Age, y, mean (SD)	49.0 (14.2)	Oxford–AstraZeneca	
Age category, n (%)		Janssen	
18-64 y	55 (80.9)	Spikevax (Moderna)	
65-74 y	11 (16.2)	Sputnik V	
≥75 y	2 (2.9)	Pfizer-BioNTech	
Sex at birth, n (%)		Unknown	
Female	44 (64.7)	^a Participant data are included only for those who had a prev postvaccination titer sample available.	
Male	24 (35.3)	Table 3 Concomitant	
BMI, ^ь (kg/m), mean (SD)	28.6 (8.0)	Table 5. Conconntant	
Race, n (%)		Therapy, n (%)	
Asian	9 (13.2)	AChEi	
White	57 (83.8)	NSISTs	
Multiple	2 (2.9)	Steroids	
^a Participant data are included only for those who had a propostvaccination titer sample available. ^b BMI data were un	revaccination titer sample and ≥1 available for 2 individuals.	^a Participant data are included only for those who had a prev	

Participants

(N=68)

postvac

ABBREVIATIONS

AChEi, acetylcholinesterase inhibitor; BMI, body mass index; COVID-19, coronavirus disease 2019; ELISA, enzyme-linked immunosorbent assay; EFG, efgartigimod; Fc, fragment crystallisable region; FcRn, neonatal Fc receptor; gMG, generalised myasthenia gravis; Ig, immunoglobulin; IV, intravenous; LLOQ; lower limit of quantification; MG, myasthenia gravis; mRNA, messenger RNA; -N, nucleocapsid protein; NSIST, nonsteroidal immunosuppressive therapy; PD, pharmacodynamic; PK, pharmacokinetic; P-V, prevaccination; -RBD, receptor-binding domain of S protein; rHuPh20, recombinant human hyaluronidase PH20; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; -S, spike protein; SARS-CoV-2-IgG, severe acute respiratory syndrome coronavirus 2 specific IgG; SC, subcutaneous; V, vaccination; V1, first vaccination; V2, second vaccination; V3, third vaccination

REFERENCES

1. Sesarman A, et al. Cell Mol Life Sci. 2010;67(15):2533-2550. 2. Pyzik M, et al. Nat Rev Immunol. 2023;23(7):415-432. 3. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372-4386. 4. Vaccaro C, et al. Nat Biotechnol. 2005;23(10):1283-1288. 5. Howard JF Jr, et al. Lancet Neurol. 2021;20(7):526-536. 6. Nixon AE, et al. Front Immunol. 2015;6:176. 7. Ward ES, et al. Front Immunol. 2022;13:892534. 8. Study ARGX-113-2001 (ADAPT-SC) Clinical Trial Protocol v2.0, 02 Jul 2021. 9. Locke KW, et al. Drug Deliv. 2019;26(1):98-106. 10. Behr M, et al. Poster presented at: the Muscular Dystrophy Association (MDA) Clinical & Scientific Conference; March 19–22, 2023; Dallas, TX, USA. 11. Patel SY, et al. Front Immunol. 2019;10(33):1-22. 12. Deepak P, et al. Ann Intern Med. 2021 Nov;174(11):1572-1585. 13. Zecca E, et al. Viruses. 2022;14(8):1766. 14. Interim Guidelines for COVID-19 Antibody Testing. CDC. Updated December 16, 2022. Accessed June 20, 2024. https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing/antibody-tests-guidelines.html.

ACKNOWLEDGMENTS AND DISCLOSURES: The authors gratefully acknowledge the ADAPT/ADAPT+ and ADAPT-SC/ADAPT-SC+ trial participants and investigators. SS, FG, PD, and BVH: argenx. FS: Alexion, Biologix, CheckRare CME, F. Hoffmann-LaRoche, Alexion, Biologix, CheckRare CME, Alexion, Alexio, (PER) CME, PlatformQ CME, Regeneron, Sanofi, Zai Labs, and Toleranzia AB. JWS: National Institutes of Health, Cellective, Enzyvant, Jeffrey Modell Foundation, and argenx. Ra, Biomarin, Catalyst, UCB, TEVA, Merck, Roche, and Biogen. JLDB: argenx, Ra, Biomarin, Catalyst, UCB, TEVA, Merck, Roche, and Biogen. JLDB: argenx, Ra, Biomarin, Catalyst, UCB, TEVA, Merck, Roche, and Novartis. The ADAPT+ and ADAPT-SC+ trials were funded by argenx. Medical writing and editorial support for this presentation were provided by Precision AQ and funded by argenx.

COVID-19 Vaccination Response in Participants Receiving Efgartigimod IV or Efgartigimod PH20 SC in ADAPT+ or ADAPT-SC+

1 (1.5)	
12 (17.6)	
3 (4.4)	
48 (70.6)	
7 (10.3)	

a prevaccination titer sample and ≥1

nt MG Therapies^a

Participants (N=68)	
56 (82.4)	
42 (61.8)	
45 (66.2)	
vaccination titer sample and ≥1	

Presented at 10th Congress of the European Academy of Neurology (EAN); June 29-July 2, 2024; Helsinki, Finland

Participants receiving efgartigimod IV or efgartigimod PH20 SC mounted antigen-specific IgG responses to each **COVID-19** immunisation, even when total IgG levels were

Effective humoral immune response to COVID-19 vaccination was not precluded by efgartigimod IV or

Seroconversion was observed for the majority of samples examined in the first through third vaccines received by the participants of ADAPT+ and ADAPT-SC+

