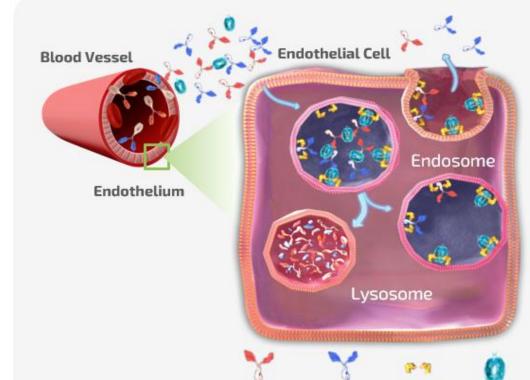


efgartigimod Prevents Necrosis And Allows For Muscle Fiber Regeneration In A Humanized Mouse Model Of Immune-Mediated Necrotizing Myopathy


Sarah Julien¹, Emma Briand¹, Bas van der Woning², Leentje De Ceuninck², Rachid Zoubari¹, Olivier Benveniste³, Laurent Drouot¹, Olivier Boyer^{1,4} ¹Univ Rouen Normandie, INSERM, UMR1234, FOCIS Center of Excellence, PAn'THER, F-76000, Rouen, France; ²Argenx, Zwijnaarde, Belgium; ³AP-HP, Pitié-Salpêtrière University Hospital, Department of Internal Medicine and Clinical Immunology, Paris, France; ⁴Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France.

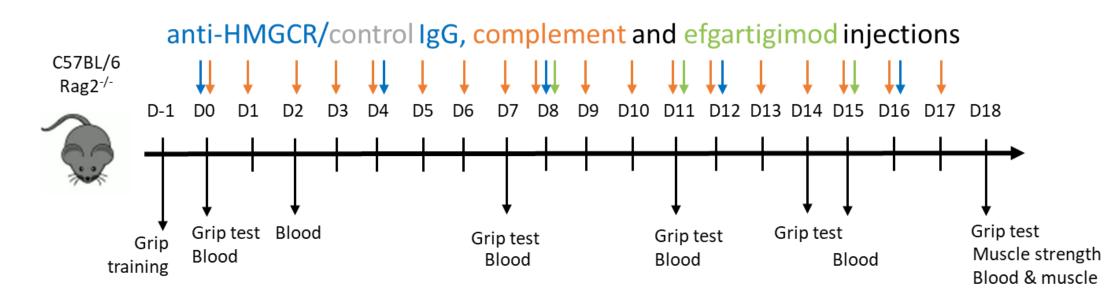
BACKGROUND

Immune-Mediated Necrotizing Myopathy (IMNM)

- IMNM is a severe form of myositis characterized by muscle weakness and elevated creatine kinase levels in serum
- Most IMNM patients have immunoglobulin G (IgG) autoantibodies directed against signal recognition particle (SRP) or hydroxy-3-methylglutaryl-CoA reductase (HMGCR)¹
- Anti-HMGCR and anti-SRP lgGs are pathogenic and induce disease after adoptive transfer to mice by two separate mechanisms:
 - 1. myolysis following complement activation²; and
 - 2. impairment of muscle fiber regeneration³

EFGARTIGIMOD: AN FcRn INHIBITOR⁴⁻⁶

- The neonatal Fc receptor (FcRn) recycles IgG, extending its half-life and serum concentration⁴
- efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity for FcRn⁵
- efgartigimod was designed to outcompete endogenous IgG, preventing recycling and promoting lysosomal degradation of **IgG**, without impacting its production⁵⁻⁶:
 - Targeted reduction of all IgG subtypes
 - No impact on IgM or IgA
 - No reduction in albumin levels
 - No increase in cholesterol
- efgartigimod is approved for the treatment of generalized myasthenia gravis (gMG) in adult patients who are

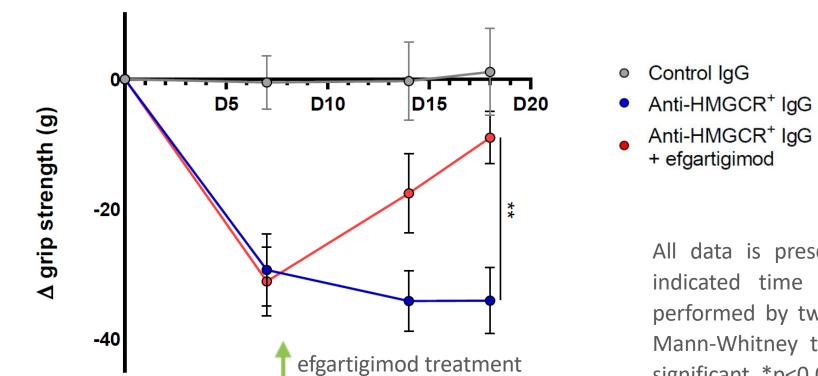


IgG FcRn Efgartigimod (Fc Fragment) Antibody Autoantibody

FcRn, neonatal Fc receptor; IgG, immunoglobulin G. Image adapted from Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med. 2019;51:1-9 and distributed under the terms of the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/).

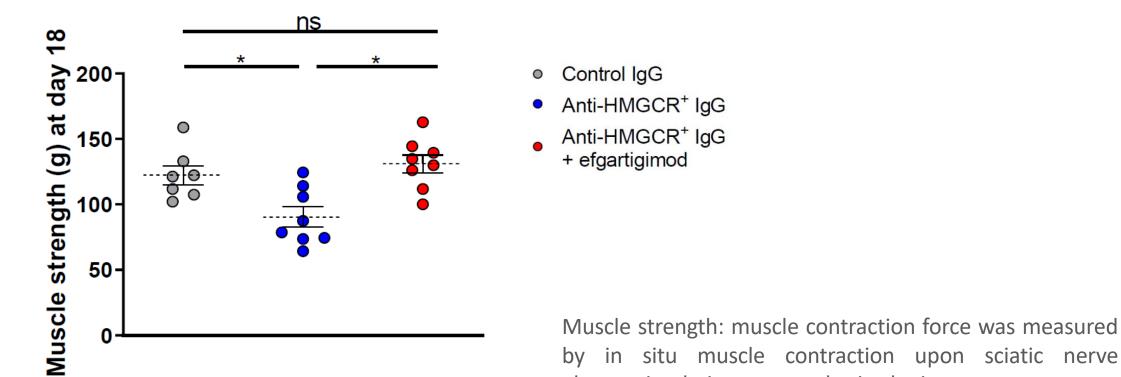
anti-acetylcholine receptor (AChR) antibody positive in the US, as an add-on to standard therapy in adult patients with gMG who are AChR antibody positive in the EU, and for adult patients with gMG regardless of antibody status in Japan.

IMNM MODEL: PASSIVE TRANSFER OF PATHOGENIC IgGs



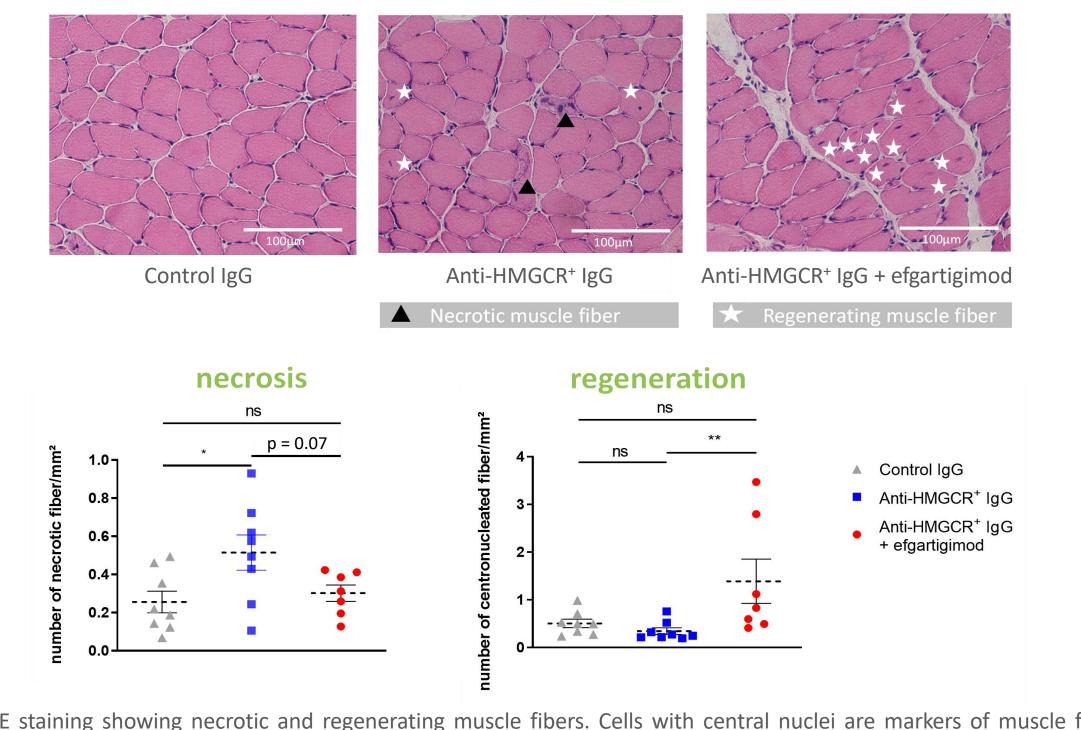
- 2 mg of IgG purified from a healthy volunteer or an anti-HMGCR+ IMNM patient were injected to Rag2^{-/-} mice
- Mice were supplemented with fresh complement-active IgG-depleted human serum
- Treatment with efgartigimod started on day 8. This is after onset of disease, as assessed on day 7

EFGARTIGIMOD REDUCES PATHOGENIC ANTI-HMGCR IgGs


EFGARTIGIMOD RESTORES GRIP STRENGTH

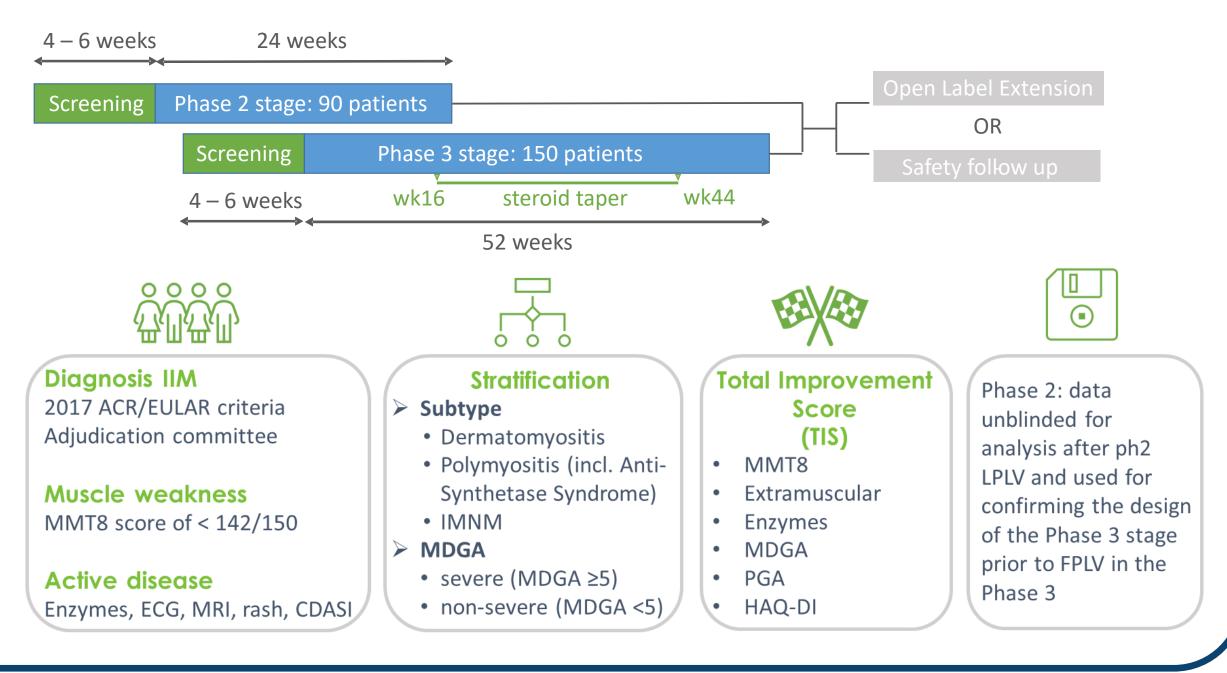


All data is presented as mean ± SEM for the indicated time points; statistical analysis was performed by two-way ANOVA (grip strength) or Mann-Whitney two-tailed test (others) ns: nonsignificant, *p<0.05, **p<0.01, ****p<0.0001


EFGARTIGIMOD RESTORES MUSCLE STRENGTH

electrostimulation on anesthetized mice.

EFGARTIGIMOD ALLOWS REGENERATION OF MUSCLE FIBER



H&E staining showing necrotic and regenerating muscle fibers. Cells with central nuclei are markers of muscle fiber regeneration. Quantification of necrotic and regenerating muscle fibers.

EFGARTIGIMOD PH20 SC RANDOMIZED, DOUBLE-BLINDED, PLACEBO-CONTROLLED TRIAL IN IIM

Standard of care + weekly 1000 mg efgartigimod PH20 (hyaluronidase) subcutaneously or placebo (1:1, double blinded) visit frequency: every 4 weeks

CONCLUSIONS

- efgartigimod results in an early reduction of pathogenic anti-HMGCR IgG antibodies in a humanized mouse model of IMNM⁷
- efgartigimod prevents further necrosis and allows muscle fiber regeneration, resulting in regain of muscle performance in a humanized mouse model of IMNM⁷
- These preclinical research results support investigating the therapeutic efficacy of efgartigimod through a clinical trial in patients with IIM (idiopathic inflammatory myopathies)

1. Allenbach Y, et al, Nat Rev Rheumatol, 2020. 16(12): p. 689-701. **2.** Bergua C, et al, Ann Rheum Dis, 2019. 78(1): p. 131-139. **3.** Arouche-Delaperche L, et al, Ann Neurol, 2017. 81(4): p. 538-548. **4.** Ward S, et al, Trends Pharm Sci 2018. 39 (10): p. 892-904

5. Ulrichts P, et al, J Clin Invest, 2018. 128(10): p. 4372-4386. 6. Vaccaro C, et al, Nat Biotech, 2005. 23(10): p. 1283-1288.

7. Julien S, et al, Rheumatol, 2023. 62(12): p. 4006-4011

LDC, BVDW: Employee: argenx. OBo^{1,4}: Consultancy/Research grants: argenx, BMS, CSL Behring, Egle Tx, OGD2 and UCB. **OBe**³: Research grants: Sanofi and AFM