

Long-Term Safety, Tolerability, and Efficacy of Efgartigimod in Participants With Generalized Myasthenia Gravis: Concluding Analyses From ADAPT+

Jamie Aldridge,¹ James F. Howard Jr,² Mamatha Pasnoor,³ Vera Bril,⁴ Chafic Karam,⁵ Stojan Peric,⁶ Jan L. De Bleecker,⁷ Hiroyuki Murai,⁸ Andreas Meisel,⁹ Said Beydoun,¹⁰ Tuan Vu,¹¹ Peter Ulrichts,¹ Benjamin Van Hoorick,¹ Caroline T'joen,¹ Kimiaki Utsugisawa,¹² Renato Mantegazza,¹³ and the ADAPT Study Group

¹argenx, Ghent, Belgium; ²Department of Neurology, The University of North Carolina; ³The University of Kansas Medical Center, Kansas; ⁴Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, Toronto, Ontario, Canada; ⁵Penn Neuroscience Center, University of Pennsylvania, Philadelphia, Pennsylvania; ⁶Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Serbia; ⁷Ghent University Hospital, Ghent, Belgium; ⁸Department of Neurology, School of Medicine International University of Health and Welfare, Tokyo, Japan; ⁹Charité – Universitätsmedizin Berlin, Medicine, Tampa, Florida; ¹²Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan; ¹³Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

SUMMARY

Efgartigimod was well tolerated throughout the course of ADAPT+, with no increase in TEAEs, serious TEAEs, or infections observed with long-term treatment

In AChR-Ab+ participants, efgartigimod treatment resulted in consistent and repeatable improvements in MG-ADL and QMG scores

In AChR-Ab+ participants, efgartigimod treatment resulted in consistent and repeatable CMI in MG-ADL and QMG scores across increasing MG-ADL and QMG thresholds over multiple cycles in ADAPT+

RESULTS

Table 1. ADAPT+ Baseline Demographics and Disease Characteristics Overall Population		Table 2. Summary of TEAEs Overall Population						
Characteristics	Efgartigimod (n=145)		ADAPT ADAPT					DAPT+ —
Age, y (SD)	47.0 (14.8)			acebo n=83)	Efgartigimod (n=84)		Efgartigimod (n=145)	
Sex, n (%)			[34.5 PY]		[34.9 PY]		[229.0 PY]	
Female	103 (71)		ER ^a	 n (%)	ER ^a	 n (%)	ER ^a	n (%)
Male	42 (29)	TEAEs ^b	7.83	70 (84)	7.23	65 (77)	3.53	124 (86)
Race, n (%)		SAEs	0.29	70 (84)	0.11	4 (5) ^c	0.24	36 (25) ^c
Asian	11 (7.6)	≥1 Infusion-related reaction event	0.25	8 (10)	0.09	3 (4)	0.09	15 (10)
Black/African American	5 (3.4)	Infection TEAEs	1.22	31 (37)	1.61	39 (46)	0.73	80 (55)
White	126 (86.9)	Discontinued due to TEAEs	0.09	3 (4)	0.20	3 (4)	0.06	12 (8)
Time since gMG diagnosis, y (SD)	9.7 (8.2)	Severe TEAEs (grade ≥3)	0.35	8 (10)	0.29	9 (11)	0.33	40 (28)
MGFA class at screening, n (%)		Death ^d	-	0 (0)	-	0 (0)	0.02	5 (3)
II	55 (37.9)	Most frequent TEAEs		0 (0)		0 (0)	0.01	0 (0)
	86 (59.3)	Nasopharyngitis	0.49	15 (18)	0.34	10 (12)	0.10	20 (14)
IV	4 (2.8)	Upper respiratory tract infection	0.14	4 (5)	0.32	9 (11)	0.03	6 (4)
AChR-Ab+, n (%)	111 (76.6)	Urinary tract infection	0.12	4 (5)	0.26	8 (10)	0.08	13 (9)
Total MG-ADL score, mean (SD)	9.8 (3.2)	Headache	1.13	23 (28)	1.15	24 (29)	0.45	36 (25)
Total QMG score, mean (SD)	15.4 (5.7)	Nausea	0.43	9 (11)	0.20	7 (8)	0.06	9 (6)
Standard of care, n (%)		Diarrhea	0.41	9 (11)	0.17	6 (7)	0.08	14 (10)
NSIST	89 (61.4)	COVID-19 ^e	-	0 (0)	-	0 (0)	0.10	23 (16) ^f
No NSIST	56 (38.6)	^a ER was calculated as number of events per total F	PY of follow-up		minantly mild or			
Steroid	111 (76.6)	related per investigator. dNone of the deaths in ADA	APT+ were rela	ted to efgartigimod a	dministration per	r the principal investi	gator. ^e Includes a	all preferred term
No steroid	34 (23.4)	COVID-19, COVID-19 pneumonia, coronavirus infe during ADAPT+, 83% had not received prior COVII	•		nd SARS-CoV-2	test positive. fAmong	g participants rep	porting COVID-19

AChR-Ab+ participants with >350 days of follow-up across ADAPT/ADAPT+ showed varying intertreatment periods, which supports an individualized treatment approach

These analyses suggest that long-term efgartigimod treatment is well tolerated and efficacious in participants with gMG

INTRODUCTION

Efgartigimod Mechanism of Action: Blocking FcRn

- In ADAPT+, 145 participants received ≥1 cycle over a median study duration of 651 days (minimum-maximum, 50-1074)
 - Participants in ADAPT+ received ≤19 treatment cycles
- Total follow-up since first treatment in study was 229 PY

- No new safety signals were observed in ADAPT+, with the safety profile over time consistent with that in ADAPT
- TEAE ERs were similar between efgartigimod and placebo in ADAPT, and ERs of most TEAEs did not increase with long-term treatment in ADAPT+
- No reductions in albumin levels or increases in LDL levels were observed with efgartigimod in ADAPT or ADAPT+

Figure 1. TEAEs by Cycle Overall Population											
¹⁰⁰]											
	75 -	51.0 n=74	46.6	25.0	38.3				40.3		
	50 -		n=62	35.0 n=42	n=41	30.6 n=30	35.1 n=33	29.9 n=23	n=29	25.4 n=16	21.8
	25 -										n=12
	₀ └─										
¹⁰⁰] ⊗ Serious TEAE											
Participants, %	75 -										
icipa	50 -										
Part	25 -	4.8 n=7	6.0 n=8	2.5 n=3	7.5 n=8	1.0 n=1	6.4 n=6	2.6 n=2	1.4 n=1	3.2 n=2	0.0 n=0
	₀ ⊥										
100 _ ■ ≥1 Infection											
	75 -										
	50 -	24.8 n=36	16.5 n=22	13.3	14.0	0.2	F -	11.7	13.9		
	25 -	11-00	n=22	n=16	n=15	9.2 n=9	5.3 n=5	n=9	n=10	1.6	5.5 n=3

- FcRn recycles IgG to extend its half-life and maintain its high serum concentration¹
- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered to have increased affinity for FcRn and outcompete endogenous IgG^{2,3}
- Efgartigimod binding to FcRn prevents IgG recycling and promotes its lysosomal degradation, thus reducing IgG levels without directly impacting IgG production²⁻⁵
 - Targeted reduction of all IgG subtypes^{2,4}
 - No impact on levels of IgM, IgA, IgE, or $IgD^{2,5}$
 - No reduction in albumin or increase in cholesterol levels⁴⁻⁶

METHODS

ADAPT was a 26-week, global, multicenter, randomized, double-blind, placebo-controlled, phase 3 trial evaluating efgartigimod in participants with gMG. Participants who completed ADAPT were eligible to be rolled over to ADAPT+^{4,a}

Figure 2. Proportion of Participants With Increasing MG-ADL or QMG Thresholds AChR-Ab+ Population

treatmente	■ ≥5 weeks between cycles	■ ≥4 weeks between cycles	■ ≥4 weeks between cycles		
■ IgG ≥6 g/L	■ MG-ADL score ≥5 ^f	■ MG-ADL score ≥5 ^f	Per investigator discretion		
	MG-ADL score within 2 points of	 MG-ADL score within 			
	baseline	2 points of baseline			

Participants who required subsequent treatment cycles but were unable to complete a treatment cycle within the time frame of ADAPT were also eligible to be rolled over to ADAPT+. ^bParticipants requiring rescue therapy in ADAPT and ADAPT+ Year 1 discontinued the study if they required rescue therapy; however, participants in ADAPT+ Years 2 and 3 did not. °≤3 cycles dosed at ≥8 weeks after initial cycle. ^dArrows indicate efgartigimod administration. ^eAChEI, steroid +/or NSIST. Participants could not change concomitant therapies in ADAPT. Physicians could change concomitant therapies between doses in Year 1 and at any time in Years 2 and 3 of ADAPT+. With >50% from nonocular items.

ABBREVIATIONS

AChEI, acetylcholinesterase inhibitor; AChR-Ab, acetylcholine receptor antibody; CMI, clinically meaningful improvement; ER, event rate; Fc, fragment crystallizable region; FcRn, neonatal Fc receptor; gMG, generalized myasthenia gravis; IgA, immunoglobulin A; IgD, immunoglobulin D; IgE, immunoglobulin E; IgG, immunoglobulin G; IgM, immunoglobulin M; IV, intravenously; LDL, low-density lipoprotein; LLN, lower limit of normal; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; NSIST, nonsteroidal immunosuppressive therapy; PY, participant-years; QMG, Quantitative Myasthenia Gravis; SAE, serious adverse event; TEAE, treatment-emergent adverse event.

ACKNOWLEDGMENTS AND DISCLOSURES: The authors gratefully acknowledge the ADAPT and ADAPT+ trial participants and investigators.

JA, PU, BVH, and CT: argenx. JFH: Alexion AstraZeneca Rare Disease, argenx, Cartesian, Centers for Disease Control and Prevention, MGFA, Muscular Dystrophy Association, NIH, PCORI, Ra Pharmaceuticals/UCB Bioscience, Takeda, AcademicCME, Biologix, F. Hoffmann-LaRoche, Horizon Therapeutics, Medscape, Merck EMB Serono, NMD Pharma, Novartis, PeerView, PlatformQ, Regeneron, Sanofi, Zai Labs, and Toleranzia AB. MP: Terumo BCT, Alexion, CSL Behring, argenx, Momenta, Catalyst, UCB, Immunovant, and Janssen. VB: Alexion, Grifols, CSL, UCB, argenx, Takeda, Octapharma, Akcea, Momenta (J&J), Immunovant, Ionis, and Viela. CK: Acceleron, Akcea, Alnylam, argenx, Biogen, CSL Behring, and Sanofi Genzyme. SP: Pfizer, Teva Actavis, Berlin-Chemie Menarini, Mylan, Wörwag, ADOC, Salveo, Kedrion, Octapharma, argenx, Sanofi Genzyme, Roche, ADOC, and Berlin-Chemie Menarini. JLDB: argenx, Alexion, CSL, UCB, Alnylam, and Sanofi Genzyme. HM: Alexion, AstraZeneca Rare Disease, argenx, UCB, Roche, Japan Blood Products Organization, Chugai, Japan's Ministry of Health, Labour and Welfare. **AM:** Alexion, argenx, Grifols, Hormosan, UCB, Janssen, Merck, Octapharma, and German Myasthenia Gravis Society. SB: AB Science, Alexion, Amylyx, argenx, Healey Center for ALS-MGH, Janssen, Sanofi, UCB, Alnylam, CSL Behring, Grifols, Janssen, Mitsubishi Pharma, Octapharma, Pfizer, and Takeda. TV: Alexion, argenx, CSL Behring, Allergan/AbbVie, AstraZeneca, UCB, Horizon/Viela Bio, Regeneron, Janssen/Momenta, Immunovant, Cartesian, and Sanofi. KU: argenx, UCB, Janssen, Merck, Mitsubishi Tanabe, Alexion, and Japan Blood Products Organization. JV: Target-to-B Consortium, Prinses Beatrix Spierfonds, argenx, Alexion, RA Pharma, and European Reference Network for Rare Neuromuscular Diseases. RM: Alexion, argenx, BioMarin, Catalyst, UCB, Teva, Merck, Roche, and Biogen. The ADAPT trial was funded by argenx. Medical writing and editorial support for this presentation was provided by PRECISION Value & Health and funded by argenx.

REFERENCES

1. Sesarman A, et al. Cell Mol Life Sci. 2010;67(15):2533-2550. 2. Ulrichts P, et al. J Clin Invest. 2018;128(10):4372-4386. 3. Vaccaro C, et al. Nat Biotechnol. 2005;23(10):1283-1288. **4.** Howard JF Jr, et al. *Lancet Neurol*. 2021;20(7):526-536. **5.** Nixon AE, et al. *Front Immunol*. 2015;6:176. 6. Ward ES. et al. Front Immunol. 2022:13:892534.

^aOnly cycles with data out to Week 11 are depicted. ^bQMG was not a required assessment in Years 2 and 3 of ADAPT+; therefore, fewer data for cycles are available compared with MG-ADL.

Efgartigimod demonstrated consistent and repeatable improvement in both MG-ADL and QMG scores over multiple cycles in ADAPT+

Figure 4. Distribution of Time Between Cycles AChR-Ab+ Population With >350 Days of Follow-Up in ADAPT/ADAPT+

- *Time between cycles* is defined as the time from the last infusion of the previous treatment cycle to the first infusion of the subsequent treatment cycle
- ADAPT+ demonstrated that individualization of cycle dosing allows for flexible or fixed time between cycles, and initiation of subsequent cycles is based on clinical evaluation and participant/health care professional goals

Median number of cycles per year was 5.1 (minimum-maximum, 0.5-7.5; mean ± SD, 4.8 ± 1.9 cycles)

26.3%

36.8%

36.8%

60

50

30

20

10